Skip to main content

Stress Fractures of the Tibia

  • Chapter
  • First Online:
Stress Fractures in Athletes

Abstract

The anatomy and biomechanics of the tibia play a critical role in the development and management of tibial stress fractures. Posterior calf musculature and the relative anterior tibial avascularity lead to a high rate of nonunion, delayed union, and fracture in “high-risk” tension-sided anterior tibial cortex stress fractures. Fracture location at the compressive side of the tibia and the abundant vasculature are favorable characteristics in “low-risk” posteromedial tibial stress fractures. The differential diagnosis of patients with overuse injuries of the leg includes stress fracture, medial tibial stress syndrome, exertional compartment syndrome, popliteal artery entrapment syndrome, and multiple nerve entrapment syndromes, among others. Risk factors for tibial stress fracture include prior stress fracture, recent increases in training intensity and/or duration, improper training technique or equipment, the female athlete triad, calcium and vitamin D deficiency, and inadequate caloric intake. The history and physical examination of a patient with a tibial stress fracture generally indicates focal point tenderness at the site of the fracture, unremitting pain with weight-bearing activity, and pain with hop and tuning fork testing. Magnetic resonance imaging is the imaging modality with the best diagnostic sensitivity and specificity. Non-operative treatment is generally successful in low-risk posteromedial tibial stress fractures. Surgical treatment, including reamed intramedullary rodding and anterior tension-band plating, is a successful treatment for chronic anterior mid-diaphyseal tibial fractures that have failed nonsurgical treatment. These procedures have produced high union rates, low complication rates, and early return to sport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sport Med. 1996;6(2):85–9.

    Article  PubMed  CAS  Google Scholar 

  2. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15(1):46–58.

    Article  PubMed  CAS  Google Scholar 

  3. Niva MH, Mattila VM, Kiuru MJ, Pihlajamaki HK. Bone stress injuries are common in female military trainees: a preliminary study. Clin Orthop Relat Res. 2009;467(11):2962–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8.

    PubMed  Google Scholar 

  5. Lafortune MA, Cavanagh PR, Sommer III HJ, Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992;25(4):347–57.

    Article  PubMed  CAS  Google Scholar 

  6. Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am. 1976;58(3):356–7.

    PubMed  CAS  Google Scholar 

  7. Beck BR. Tibial stress injuries. An aetiological review for the purposes of guiding management. Sports Med. 1998;26(4):265–79.

    Article  PubMed  CAS  Google Scholar 

  8. Galbraith RM, Lavallee ME. Medial tibial stress syndrome: conservative treatment options. Curr Rev Musculoskelet Med. 2009;2(3):127–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8(6):344–53.

    PubMed  CAS  Google Scholar 

  10. Porrino Jr JA, Kohl CA, Taljanovic M, Rogers LF. Diagnosis of proximal femoral insufficiency fractures in patients receiving bisphosphonate therapy. Am J Roentgenol. 2010;194(4):1061–4.

    Article  Google Scholar 

  11. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014; 42(4):949–58.

    Article  PubMed  Google Scholar 

  12. Bickley LS, Szilagyi P. Bates’ guide to physical examination and history taking. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  13. Yuksel O, Ozgurbuz C, Ergun M, Islegen C, Taskiran E, Denerel N, et al. Inversion/Eversion strength dysbalance in patients with medial tibial stress syndrome. J Sports Sci Med. 2011;10(4):737–42.

    PubMed  PubMed Central  Google Scholar 

  14. Brunet ME, Cook SD, Brinker MR, Dickinson JA. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30(3):307–15.

    PubMed  CAS  Google Scholar 

  15. Lesho EP. Can tuning forks replace bone scans for identification of tibial stress fractures? Mil Med. 1997;162(12):802–3.

    PubMed  CAS  Google Scholar 

  16. Moore MB. The use of a tuning fork and stethoscope to identify fractures. J Athl Train. 2009;44(3): 272–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Allen CS, Flynn TW, Kardouni JR, Hemphill MH, Schneider CA, Pritchard AE, et al. The use of a pneumatic leg brace in soldiers with tibial stress fractures–a randomized clinical trial. Mil Med. 2004;169(11): 880–4.

    PubMed  Google Scholar 

  18. Clement DB, Ammann W, Taunton JE, Lloyd-Smith R, Jesperson D, McKay H, et al. Exercise-induced stress injuries to the femur. Int J Sports Med. 1993; 14(6):347–52.

    Article  PubMed  CAS  Google Scholar 

  19. Batt ME, Ugalde V, Anderson MW, Shelton DK. A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc. 1998; 30(11):1564–71.

    Article  PubMed  CAS  Google Scholar 

  20. Peeler J, Anderson J. Reliability of the Thomas test for assessing range of motion about the hip. Phys Ther Sport. 2007;8(1):14–21.

    Article  Google Scholar 

  21. Ober F. The role of the iliotibial band and fascia lata as a factor in the causation of low-back disabilities and disabilities in sciatica. J Bone Joint Surg Am. 1936;18:105–10.

    Google Scholar 

  22. Silfverskiold N. Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand. 1924;56:315–30.

    Google Scholar 

  23. Ishibashi Y, Okamura Y, Otsuka H, Nishizawa K, Sasaki T, Toh S. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone. Clin J Sport Med. 2002;12(2):79–84.

    Article  PubMed  Google Scholar 

  24. Clanton T, Solcher B, Baxter D. Treatment of anterior midtibial stress fractures. Sports Med Arthrosc. 1994; 2(4):293–300.

    Google Scholar 

  25. Varner KE, Younas SA, Lintner DM, Marymont JV. Chronic anterior midtibial stress fractures in athletes treated with reamed intramedullary nailing. Am J Sports Med. 2005;33(7):1071–6.

    Article  PubMed  Google Scholar 

  26. Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235(2):553–61.

    Article  PubMed  Google Scholar 

  27. Ekenman I. Do not use bisphosphonates without scientific evidence, neither in treatment nor prophylactic, in the treatment of stress fractures. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):433–4.

    Article  PubMed  Google Scholar 

  28. Shima Y, Engebretsen L, Iwasa J, Kitaoka K, Tomita K. Use of bisphosphonates for the treatment of stress fractures in athletes. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):542–50.

    Article  PubMed  Google Scholar 

  29. Sloan AV, Martin JR, Li S, Li J. Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone. 2010;47(2):235–40.

    Article  PubMed  CAS  Google Scholar 

  30. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76(1):26–34.

    PubMed  CAS  Google Scholar 

  31. Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, et al. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol. 2010;36(7):1098–108.

    Article  PubMed  Google Scholar 

  32. Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res. 2004;418:253–9.

    Article  PubMed  Google Scholar 

  33. Sant’Anna EF, Leven RM, Virdi AS, Sumner DR Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res. 2005;23(3):646–52.

    Article  PubMed  Google Scholar 

  34. Freeman TA, Patel P, Parvizi J, Antoci Jr V, Shapiro IM. Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res. 2009;27(5):673–9.

    Article  PubMed  Google Scholar 

  35. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005;31(5):703–8.

    Article  PubMed  Google Scholar 

  36. Lai CH, Chen SC, Chiu LH, Yang CB, Tsai YH, Zuo CS, et al. Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation. Ultrasound Med Biol. 2010;36(6): 1022–33.

    Article  PubMed  Google Scholar 

  37. Rue JP, Armstrong III DW, Frassica FJ, Deafenbaugh M, Wilckens JH. The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics. 2004;27(11):1192–5.

    PubMed  Google Scholar 

  38. Swenson Jr EJ, DeHaven KE, Sebastianelli WJ, Hanks G, Kalenak A, Lynch JM. The effect of a pneumatic leg brace on return to play in athletes with tibial stress fractures. Am J Sports Med. 1997;25(3): 322–8.

    Article  PubMed  Google Scholar 

  39. Rome K, Handoll HH, Ashford R. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev. 2005;2:CD000450.

    PubMed  Google Scholar 

  40. Matheson GO, Brukner P. Pneumatic leg brace after tibial stress fracture for faster return to play. Clin J Sport Med. 1998;8(1):66.

    Article  PubMed  CAS  Google Scholar 

  41. Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.

    Article  PubMed  Google Scholar 

  42. Beals RK, Cook RD. Stress fractures of the anterior tibial diaphysis. Orthopedics. 1991;14(8):869–75.

    PubMed  CAS  Google Scholar 

  43. Batt ME, Kemp S, Kerslake R. Delayed union stress fractures of the anterior tibia: conservative management. Br J Sports Med. 2001;35(1):74–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Borens O, Sen MK, Huang RC, Richmond J, Kloen P, Jupiter JB, et al. Anterior tension band plating for anterior tibial stress fractures in high-performance female athletes: a report of 4 cases. J Orthop Trauma. 2006;20(6):425–30.

    Article  PubMed  Google Scholar 

  45. Court-Brown CM, Gustilo T, Shaw AD. Knee pain after intramedullary tibial nailing: its incidence, etiology, and outcome. J Orthop Trauma. 1997;11(2): 103–5.

    Article  PubMed  CAS  Google Scholar 

  46. Shelbourne KD, Fisher DA, Rettig AC, McCarroll JR. Stress fractures of the medial malleolus. Am J Sports Med. 1988;16(1):60–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

J.D.H.: Editorial Board for Arthroscopy: The Journal of Arthroscopic and Related Surgery.

K.E.V.: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Harris MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harris, J.D., Varner, K.E. (2015). Stress Fractures of the Tibia. In: Miller, T., Kaeding, C. (eds) Stress Fractures in Athletes. Springer, Cham. https://doi.org/10.1007/978-3-319-09238-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09238-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09237-9

  • Online ISBN: 978-3-319-09238-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics