Skip to main content

Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms

  • Chapter
  • First Online:
Phosphate Solubilizing Microorganisms

Abstract

Phosphorus (P) is the second important key plant nutrient after nitrogen. An adequate supply of P is therefore required for proper functioning and various metabolisms of plants. Majority of P in soils is fixed, and hence, plant available P is scarcely available despite the abundance of both inorganic and organic P forms in soils. A group of soil microorganisms capable of transforming insoluble P into soluble and plant accessible forms across different genera, collectively called phosphate-solubilizing microorganisms (PSM), have been found as best eco-friendly option for providing inexpensive P to plants. These organisms in addition to supplying soluble P to plants also facilitate the growth of plants by several other mechanisms, for instance, improving the uptake of nutrients and stimulating the production of some phytohormones. Even though several bacterial, fungal and actinomycetal strains have been identified as PSM, the mechanism by which they make P available to plants is poorly understood. This chapter focuses on the mechanism of P-solubilization and physiological functions of phosphate solubilizers in order to better understand the ecophysiology of PSM and consequently to gather knowledge for managing a sustainable environmental system. Conclusively, PSM are likely to serve as an efficient bio-fertilizer especially in areas deficient in P to increase the overall performance of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA (2001) Survival of rhizobia/bradyrhizobia and a rock-phosphate-solubilizing fungus Aspergillus niger on various carriers from some agro-industrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutr 24:261–272

    CAS  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria. Agron Sustain Dev 30:487–495

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    CAS  PubMed  Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorus and phosphate solubilizing microorganisms—an overview. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova, New York, pp 1–4

    Google Scholar 

  • Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307

    CAS  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer, New York, p 342

    Google Scholar 

  • Arwidsson Z, Johansson E, Kronhelm TV, Allard B, van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi I—production of organic acids. Water Air Soil Pollut 205:215–226

    CAS  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    CAS  Google Scholar 

  • Aseri GK, Jain N, Tarafdar JC (2009) Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am-Eurasian J Agric Environ Sci 5:564–570

    CAS  Google Scholar 

  • Badawi FSF, Biomy AMM, Desoky AH (2011) Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria. In: Hillel D, Hillel D (eds) Encyclopaedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Beech IB, Paiva M, Caus M, Coutinho C (2001) Enzymatic activity and within biofilms of sulphate-reducing bacteria. In: Gilbert PG, Allison D, Brading M, Verran J, Walker J (eds) Biofilm community interactions: change or necessity? Boiline, Cardiff, pp 231–239

    Google Scholar 

  • Belimov AA, Safranova VI, Mimura T (2002) Response of spring rape (Brassica napus) to inoculation with PGPR containing ACC-deaminase depends on nutrient status of plant. Can J Microbiol 48:189–199

    CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    CAS  PubMed  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop ML, Chang AC, Lee RWK (1994) Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157:238–243

    CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall of India, New Delhi, 960

    Google Scholar 

  • Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of cluster bean. Plant Physiol 91:889–897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buch A, Archana G, Kumar GN (2008) Metabolic channelling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159:635–642

    CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP (2009) Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J Appl Microbiol 107:625–634

    CAS  PubMed  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin

    Google Scholar 

  • Czarny JC, Shah S, Glick BR (2007) Response of canola plants at the transcriptional level to expression of a bacterial ACC deaminase in the roots. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research. Springer, Dordrecht, pp 377–382

    Google Scholar 

  • Danova K, Todorova M, Trendafilova A, Evstatieva L (2012) Cytokinin and auxin effect on the terpenoid profile of the essential oil and morphological characteristics of shoot cultures of Artemisia alba. Nat Prod Commun 7:1075–1076

    CAS  PubMed  Google Scholar 

  • Davies PJ (1995) Plant hormones. Kluwer, Dorderecht

    Google Scholar 

  • Dazzo FB, Yanni YG (2006) The natural rhizobium-cereal crop association as an example of plant-bacterial interaction. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 109–127

    Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 54:211–217

    Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    CAS  PubMed  Google Scholar 

  • Dobert RC, Rood SB, Zanewich K, Blevins DG (1992) Gibberellins and the Legume-Rhizobium symbiosis: III. Quantification of gibberellins from stems and nodules of Lima Bean and Cowpea. Plant Physiol 100:1994–2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    CAS  PubMed  Google Scholar 

  • Dugan P, Lundgren DG (1965) Energy supply for the chemoautotroph Ferrobacillus ferrooxidans. J Bacteriol 89:825–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2007) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Farajzadeh D, Yakhchali B, Aliasgharzad N, Bashir NS, Farajzadeh M (2012) Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403

    CAS  PubMed  Google Scholar 

  • Faramarzi MA, Brand H (2006) Formation of water-soluble metal cyanide complexes from solid by Pseudomonas plecoglossicida. FEMS Microbiol Lett 259:47–52

    CAS  PubMed  Google Scholar 

  • Ferguson L, Lessenger JE (2006) Plant growth regulators. In: Lessenger JE (ed) Agricultural medicine. Springer, New York, pp 156–166

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: microbial production and function. Dekker, New York, p 503

    Google Scholar 

  • Gill PRJ, Barton LL, Scoble MD, Neilands JB (1991) A high-affinity iron transport system of Rhizobium meliloti may be required for efficient nitrogen fixation in planta. Plant Soil 130:211–271

    CAS  Google Scholar 

  • Giordano W, Avalos J, Cerdá-Olmedo E, Domenech CE (1999a) Nitrogen availability and production of bikaverin and gibberellins in Gibberella fujikuroi. FEMS Microbiol Lett 173:389–393

    CAS  Google Scholar 

  • Giordano W, Avalos J, Fernandez-Martín R, Cerdá-Olmedo E, Domenech C (1999b) Lovastatin inhibits the production of gibberellins but not sterol or carotenoid biosynthesis in Gibberella fujikuroi. Microbiology 145:2997–3002

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentration by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    CAS  PubMed  Google Scholar 

  • Guimarães LHS, Peixoto-Nogueira SC, Michelinl M, Rizzatti ACS, Sandrim VC, Zanoelo F, Aquino ACMM, Junior AB, de Lourdes M, Polizeli TM (2006) Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz J Microbiol 37:474–480

    Google Scholar 

  • Guo J, Ma C, Kadmiel M, Gai Y, Strauss S (2011) Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below- ground biomass growth through control of bioactive GA concentrations. New Phytol 192:626–639

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    CAS  PubMed  Google Scholar 

  • Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204

    CAS  Google Scholar 

  • Hamadali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate solubilizing actinomycetes: screening for plant growth promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Google Scholar 

  • Helbig J (2001) Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol 149:265–273

    Google Scholar 

  • Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 43:1825–1831

    Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1 aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 703:11–19

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms soil. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    CAS  PubMed  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    CAS  Google Scholar 

  • Jain R, Saxena J, Sharma V (2012) Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol 62:725–735

    CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Karadeniz A, Topeuoglu SF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    CAS  Google Scholar 

  • Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377

    CAS  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Indian J Bot Soc 81:255–263

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56:73–98

    CAS  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265

    Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishmore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Fourth international conference on plant pathogen bacteria, Angers, France, vol 2. pp 879–882

    Google Scholar 

  • Knowles CJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microb Physiol 27:73–111

    CAS  PubMed  Google Scholar 

  • Krishnan HB, Kang BR, Krishnan AH, Kil Kim KY, Kim YC (2007) Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance. Appl Environ Microbiol 73:327–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    CAS  PubMed  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    CAS  PubMed  Google Scholar 

  • Kumar V, Singh P, Jorquera MA, Sangwan P, Kumar P, Verma AK, Sanjeev A (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29:1361–1369

    CAS  PubMed  Google Scholar 

  • Legault GS, Lerat S, Nicolas P, Beaulieu C (2011) Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101:1045–1051

    CAS  PubMed  Google Scholar 

  • Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    CAS  PubMed  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    CAS  Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fertil Soil 33:146–151

    CAS  Google Scholar 

  • Marra LM, Soares CRFSS, de Oliveira SM, Ferreira PAAA, Soares BL, Carvalho RF, Lima JM, Moreira FM (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307

    CAS  Google Scholar 

  • Mayak S, Tirosh S, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiol 166:525–530

    CAS  Google Scholar 

  • Mehboob I, Zahir A, Arshad M, Tanveer A, Azam F (2010) Growth promoting activities of different rhizobium spp., in wheat. Pak J Bot 43:1643–1650

    Google Scholar 

  • Mellado JC, Onofre-Lemus J, Santos PE, Martinez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Google Scholar 

  • Mendes GO, Dias CS, Silva IR, Júnior JIR, Pereira OL, Costa MD (2013) Fungal rock phosphate solubilization using sugarcane bagasse. World J Microbiol Biotechnol 29:43–50

    CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275

    CAS  Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 210–215

    Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    CAS  PubMed  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker ILW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    CAS  PubMed  Google Scholar 

  • Nozawa M, Hu HY, Fujie K, Tanaka H, Urano K (1998) Quantitative detection of Enterobacter cloacae strain HO-I in bioreactor for chromate wastewater treatment using polymerase chain reaction [PCR]. Water Res 32:3472–3476

    CAS  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1- carboxylate deaminase gene requires symbiotic nitrogen fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    CAS  PubMed  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 1:176–183

    Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:340–350

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Pradhan N, Shukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qing-xia S-j L, Jing-you X, Zhao-lin J, Xi-jun C, Yun-hui T (2011) Purification and characterization of chitinase produced by Sinorhizobium sp. strain L03. Chin J Biol Control 27:241–245

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Nagendran R, Kui Jae L, Wang Hyu L, Sung Zoo K (2006) Influence of plant growth promoting bacteria and Cr (vi) on the growth of Indian mustard. Chemosphere 62:741–748

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    CAS  PubMed  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Google Scholar 

  • Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Reed MLE, Warner B, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    CAS  PubMed  Google Scholar 

  • Reyes I, Bernier L, Simard R, Antoun H (1999) Effect of nitrogen source on solubilization of different inorganic phosphates by bacterial strain of Penicillium rugulosum and two UV induced mutants. FEMS Microbiol Ecol 28:281–290

    CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Management of the soil biota in sustainable farming systems. CSIRO Publishing, Melbourne, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3(4):e2073. doi:10.1371/journal.pone.0002073

    PubMed Central  PubMed  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root associated bacteria containing1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Sane D, Aberlenc-Bertossi F, Diatta LI, Gueye B, Daher A (2012) Influence of growth regulators on callogenesis and somatic embryo development in date palm (Phoenix dactylifera L) Sahelian cultivars. Sci World J 2012:837395

    Google Scholar 

  • Sasek V, Novakova M, Jindrichova B, Boka K, Valentova O, Burketova L (2012) Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol Plant Microbe Interact 25:1238–1250

    CAS  PubMed  Google Scholar 

  • Sattar MA, Gaur AC (1987) Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl Microbiol 142:393–395

    CAS  Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010a) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soil 46:755–763

    CAS  Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010b) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755763

    Google Scholar 

  • Schadeck RJG, Buchi DF, Leite B (1998a) Ultrastructural aspects of Colletotrichum graminicola conidium germination, appressorium formation and penetration on cellophane membranes: focus on lipid reserves. J Submicro Cytol Pathol 30:555–561

    Google Scholar 

  • Schadeck RJG, Leite B, Buchi DF (1998b) Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum graminicola. Cell Struct Funct 23:333–340

    CAS  PubMed  Google Scholar 

  • Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Cienc Rural 38:658–664

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Elsas JDV, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    CAS  PubMed  Google Scholar 

  • Shahid M, Hameed S, Imran A, Ali S, Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758

    CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    CAS  PubMed  Google Scholar 

  • Shenoy VV, Kalagudi GM (2005) Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513

    CAS  PubMed  Google Scholar 

  • Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M, Sa T (2006) Phosphate solubilization and growth promotion of maize [Zea mays L.] by the rhizosphere soil fungus Penicillium oxalicum. In: 18th World congress of soil science. 9–15 July, Philadelphia, PA

    Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity. Plant Physiol Biochem 49:427–434

    CAS  PubMed  Google Scholar 

  • Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Alloway VJ (ed) Micronutrient deficiencies in global crop production. Springer Science Buisness Media, Berlin, pp 93–125

    Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Prot 29:1142–1147

    Google Scholar 

  • Solano RB, García JAL, Garcia-Villaraco A, Algar E, Garcia-Cristobal J, Mañero FJG (2010) Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum ycopersicum L. Plant Soil 334:189–197

    Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Baraz J Microbiol 39:151–156

    Google Scholar 

  • Souchie EL, Azcon R, Barea JM, Saggin-Júnior OJ, da Silva EMR (2007) Indoleacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci Biol Sci 29:315–320

    CAS  Google Scholar 

  • Sridevi M, Kumar KG, Mallaiah KV (2008) Production of catechol-type of siderophores by Rhizobium sp Isolate from stem nodules of Sesbania procumbens (Roxb) 3:282–287

    Google Scholar 

  • Stajković O, Delić D, Jošić D, Kuzmanović D, Rasulić N, Knežević-Vukčević J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Stearns JC, Woody OZ, McConkey BJ, Glick BR (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression measured with an Arabidopsis thaliana microarray. Mol Plant Microbe Interact 25:668–676

    CAS  PubMed  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Guozy J, Brown SD et al (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Ind J Microbiol 43:37–40

    Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    CAS  Google Scholar 

  • Tarafdar JC, Gharu A (2006) Mobilization of organic and poorly soluble phosphates by Chaetomium globosum. Appl Soil Ecol 32:273–283

    Google Scholar 

  • Tarafdar JC, Rao AV, Bala K (1988) Production of phosphatases by fungi isolated from desert soils. Folia Microbiol 33:453–457

    CAS  Google Scholar 

  • Tate KR (1984) The biological transformation of P in soil. Plant Soil 76:245–256

    CAS  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D, Ibáñez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    CAS  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1- carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    CAS  PubMed  Google Scholar 

  • To-O K, Kamasaka H, Kusaka K, Kuriki T, Kometani K, Okada S (1997) A novel acid phosphatase from Aspergillus niger KU-8 that specifically hydrolyzes C-6 phosphate groups of phosphoryl oligosaccharides. Biosci Biotechnol Biochem 61:1512–1517

    CAS  PubMed  Google Scholar 

  • To-O K, Kamasaka H, Kuriki T, Okada S (2000) Substrate selectivity in Aspergillus niger KU-8 acid phosphatase II using phosphoryl oligosaccharides. Biosci Biotechnol Biochem 64:1534–1537

    CAS  PubMed  Google Scholar 

  • Toro M (2007) Phosphate solubilizing microorganisms in the rhizosphere of native plants from tropical savannas: an adaptive strategy to acid soils? In: Velazquez C, Rodriguez-Barrueco E (eds) Developments in plant and soil sciences. Springer, The Netherlands, pp 249–252

    Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore producing lead and cadmium resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    CAS  PubMed  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    CAS  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N et al (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Bravo V, Fernández-Serrano M, Nikolaeva I (2007) Simultaneous phytase production and rock phosphate solubilization by Aspergillus niger grown on dry olive wastes. Ind Crops Prod 26:332–336

    CAS  Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    CAS  Google Scholar 

  • Verma DPS, Long S (1983) The molecular biology of rhizobium–legume symbiosis. Int Rev Cytol Suppl 14:211–245

    CAS  Google Scholar 

  • Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427

    CAS  PubMed  Google Scholar 

  • Viruel E, Lucca ME, Siñeriz F (2011) Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch Microbiol 193:489–496

    CAS  PubMed  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano JM, Barea JM, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn toxicity. Chemosphere 52:1523–1533

    Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174

    PubMed Central  PubMed  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-lcarboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gac A derivative CHA96 on their growth promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Tian J, Lim BL, Yan X, Liao H (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007d) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    CAS  PubMed  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Google Scholar 

  • Yadav BK, Tarafdar JC (2007) Availability of unavailable phosphate compounds as a phosphorus source for clusterbean (Cyamopsis tetragonoloba (L.) Taub.) through the activity of phosphatase and phytase produced by actinomycetes. J Arid Legum 4:110–116

    Google Scholar 

  • Yadav BK, Tarafdar JC (2011) Penicillium Purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Res Manag 25:87–99

    CAS  Google Scholar 

  • Yadav BK, Verma A (2012). Phosphate solubilization and mobilization in soil through soil microorganisms under arid ecosystems, the functioning of ecosystems. In: Ali M (ed) In Tech. ISBN: 978-953-51-0573-2, Available from http://www.intechopen.com/books/the-functioning-ofecosystems/phosphate-solubilization-and-mobilization-in-soil-through-microorganisms-under-arid-ecosystems

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    CAS  PubMed  Google Scholar 

  • Yang J, Huang X, Tian B, Wang M, Niu Q, Zhang K (2005) Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnol Lett 27:1123–1128

    CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    CAS  PubMed  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exo-polysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on green gram-Bradyrhizobium symbiosis. Turk J Agric For 30:223–230

    CAS  Google Scholar 

  • Zdor RE, Anderson J (1992) Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140:99–107

    Google Scholar 

  • Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH (2012) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, M.S., Zaidi, A., Ahmad, E. (2014). Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Phosphate Solubilizing Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-08216-5_2

Download citation

Publish with us

Policies and ethics