Skip to main content

Phase Transition and Strong Predictability

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

The statistical mechanical interpretation of algorithmic information theory (AIT, for short) was introduced and developed in our former work [K. Tadaki, Local Proceedings of CiE 2008, pp.425–434, 2008], where we introduced the notion of thermodynamic quantities into AIT. These quantities are real functions of temperature T > 0. The values of all the thermodynamic quantities diverge when T exceeds 1. This phenomenon corresponds to phase transition in statistical mechanics. In this paper we introduce the notion of strong predictability for an infinite binary sequence and then apply it to the partition function Z(T), which is one of the thermodynamic quantities in AIT. We then reveal a new computational aspect of the phase transition in AIT by showing the critical difference of the behavior of Z(T) between T = 1 and T < 1 in terms of the strong predictability for the base-two expansion of Z(T).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calude, C.S., Hay, N.J., Stephan, F.C.: Representation of left-computable ε-random reals. J. Comput. Syst. Sci. 77, 812–819 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calude, C.S., Stay, M.A.: Natural halting probabilities, partial randomness, and zeta functions. Inform. and Comput. 204, 1718–1739 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  5. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, New York (2010)

    Book  MATH  Google Scholar 

  6. Gács, P.: On the symmetry of algorithmic information. Soviet Math. Dokl. 15, 1477–1480 (1974); correction, ibid. 15, 1480 (1974)

    Google Scholar 

  7. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, New York (2001)

    Book  Google Scholar 

  8. Levin, L.A.: Laws of information conservation (non-growth) and aspects of the foundations of probability theory. Problems of Inform. Transmission 10, 206–210 (1974)

    Google Scholar 

  9. Nies, A.: Computability and Randomness. Oxford University Press, Inc., New York (2009)

    Book  MATH  Google Scholar 

  10. Ruelle, D.: Statistical Mechanics. In: Rigorous Results, 3rd edn. Imperial College Press and World Scientific Publishing Co., Pte. Ltd, Singapore (1999)

    Google Scholar 

  11. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer (1971)

    Google Scholar 

  12. Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math. J. 31, 219–253 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tadaki, K.: A statistical mechanical interpretation of instantaneous codes. In: Proceedings of 2007 IEEE International Symposium on Information Theory (ISIT 2007), Nice, France, June 24-29, pp. 1906–1910 (2007)

    Google Scholar 

  14. Tadaki, K.: A statistical mechanical interpretation of algorithmic information theory. In: Local Proceedings of Computability in Europe 2008 (CiE 2008), June 15-20, pp. 425–434. University of Athens, Greece (2008), Electronic Version Available at, http://www.cs.swan.ac.uk/cie08/cie2008-local.pdf , Extended Version also Available from: arXiv:0801.4194v1

  15. Tadaki, K.: Fixed point theorems on partial randomness. Annals of Pure and Applied Logic 163, 763–774 (2012); Special Issue of the Symposium on Logical Foundations of Computer Science (2009)

    Google Scholar 

  16. Tadaki, K.: A statistical mechanical interpretation of algorithmic information theory III: Composite systems and fixed points. In: Special Issue of the CiE 2010 Special Session on Computability of the Physical. Mathematical Structures in Computer Science, vol. 22, pp. 752–770 (2012)

    Google Scholar 

  17. Tadaki, K.: A statistical mechanical interpretation of algorithmic information theory: Total statistical mechanical interpretation based on physical argument. Journal of Physics: Conference Series (JPCS) 201, 012006, 10 (2010)

    Google Scholar 

  18. Tadaki, K.: Robustness of statistical mechanical interpretation of algorithmic information theory. In: Proceedings of the 2011 IEEE Information Theory Workshop (ITW 2011), Paraty, Brazil, October 16-20, pp. 237–241 (2011)

    Google Scholar 

  19. Tadaki, K.: Phase transition between unidirectionality and bidirectionality. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 203–223. Springer, Heidelberg (2012)

    Google Scholar 

  20. Toda, M., Kubo, R., Saitô, N.: Statistical Physics I. Equilibrium Statistical Mechanics, 2nd edn. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohtaro Tadaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tadaki, K. (2014). Phase Transition and Strong Predictability. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics