Skip to main content

A Combinatorial Technique for Construction of Triangular Covers of Digital Objects

  • Conference paper
Combinatorial Image Analysis (IWCIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Included in the following conference series:

Abstract

The construction of a minimum-area geometric cover of a digital object is important in many fields of image analysis and computer vision. We propose here the first algorithm for constructing a minimum-area polygonal cover of a 2D digital object as perceived on a uniform triangular grid. The polygonal cover is triangular in the sense that its boundary consists of a sequence of edges on the underlying grid. The proposed algorithm is based on certain combinatorial properties of a digital object on a grid, and it computes the tightest cover in time linear in perimeter of the object. We present experimental results to demonstrate the efficacy, robustness, and versatility of the algorithm, and they indicate that the runtime varies inversely with the grid size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeson, M.: Triangle tiling I: The tile is similar to ABC or has a right angle. arXiv preprint arXiv:1206.2231 (2012)

    Google Scholar 

  2. Birch, C.P.D., Oom, S.P., Beecham, J.A.: Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling 206(3), 347–359 (2007)

    Article  Google Scholar 

  3. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers of a digital object: A combinatorial approach. Journal of Visual Communication and Image Representation 21(4), 295–310 (2010)

    Article  Google Scholar 

  4. Bodini, O., Rémila, E.: Tilings with trichromatic colored-edges triangles. Theoretical Computer Science 319(1), 59–70 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butler, S., Chung, F., Graham, R., Laczkovich, M.: Tiling polygons with lattice triangles. Discrete & Computational Geometry 44(4), 896–903 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clason, R.G.: Tiling with golden triangles and the penrose rhombs using logo. Journal of Computers in Mathematics and Science Teaching 9(2), 41–53 (1989)

    Google Scholar 

  7. Conway, J.H., Lagarias, J.C.: Tiling with polyominoes and combinatorial group theory. Journal of Combinatorial Theory, Series A 53(2), 183–208 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daniel, H., Tom, K., Elmar, L.: Exploring simple triangular and hexagonal grid polygons online. arXiv preprint arXiv:1012.5253 (2010)

    Google Scholar 

  9. Freeman, H.: Algorithm for generating a digital straight line on a triangular grid. IEEE Transactions on Computers 100(2), 150–152 (1979)

    Article  Google Scholar 

  10. Gardner, M.: Knotted Doughnuts and Other Mathematical Entertainments. Freeman and Company, New York (1986)

    MATH  Google Scholar 

  11. Goodman-Strauss, C.: Regular production systems and triangle tilings. Theoretical Computer Science 410(16), 1534–1549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Innchyn, H.: Geometric transformations on the hexagonal grid. IEEE Transactions on Image Processing 4(9), 1213–1222 (1995)

    Article  Google Scholar 

  13. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  14. Laczkovich, M.: Tilings of convex polygons with congruent triangles. Discrete & Computational Geometry 48(2), 330–372 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Transactions on Computers 25(5), 532–533 (1976)

    Article  MATH  Google Scholar 

  16. Nagy, B.: Neighbourhood sequences in different grids. Ph.D. thesis, University of Debrecen (2003)

    Google Scholar 

  17. Nagy, B.: Shortest paths in triangular grids with neighbourhood sequences. Journal of Computing and Information Technology 11(2), 111–122 (2003)

    Article  Google Scholar 

  18. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25(11), 1231–1242 (2004)

    Article  Google Scholar 

  19. Nagy, B.: Generalised triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 20(1), 63–78 (2004)

    MATH  Google Scholar 

  20. Nagy, B.: Distances with neighbourhood sequences in cubic and triangular grids. Pattern Recognition Letters 28(1), 99–109 (2007)

    Article  Google Scholar 

  21. Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Nagy, B., Barczi, K.: Isoperimetrically optimal polygons in the triangular grid with Jordan-type neighbourhood on the boundary. International Journal of Computer Mathematics 90(8), 1–24 (2012)

    Google Scholar 

  23. Shimizu, K.: Algorithm for generating a digital circle on a triangular grid. Computer Graphics and Image Processing 15(4), 401–402 (1981)

    Article  Google Scholar 

  24. Subramanian, K.G., Wiederhold, P.: Generative models for pictures tiled by triangles. Science and Technology 15(3), 246–265 (2012)

    Google Scholar 

  25. Sury, B.: Group theory and tiling problems. Symmetry: A Multi-Disciplinary Perspective 16(16), 97–117 (2011)

    MathSciNet  Google Scholar 

  26. Wüthrich, C.A., Stucki, P.: An algorithmic comparison between square-and hexagonal-based grids. CVGIP: Graphical Models and Image Processing 53(4), 324–339 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Das, B., Dutt, M., Biswas, A., Bhowmick, P., Bhattacharya, B.B. (2014). A Combinatorial Technique for Construction of Triangular Covers of Digital Objects. In: Barneva, R.P., Brimkov, V.E., Å lapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics