Skip to main content

Systemic Interdependencies

  • Reference work entry
  • First Online:
Handbook of Science and Technology Convergence

Abstract

The increasing complexification of our society is creating and/or tightening interdependences among all its component systems; it is thus crucial to understand the consequences of such an evolution. We will discuss how such interdependences can lead to systemic risk, i.e., to the emergence of unforeseen behavior that could have not been predicted from the understanding of the single systems. In this chapter we will pose some examples of systemic interdependences and introduce some tools and models that allow to understand their possible consequences in sociotechnical systems; we will then revise some reference literature with particular attention to complex network approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson PW (1972) More is different. Science 177(4047):393–396

    Article  Google Scholar 

  • Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153

    Article  MathSciNet  Google Scholar 

  • Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC (2012) Network physiology reveals relations between network topology and physiological function. Nat Commun 3:702

    Article  Google Scholar 

  • Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G (2012) Debtrank: too central to fail? financial networks, the fed and systemic risk. Sci Rep 2:541

    Article  Google Scholar 

  • Boccaletti S, Bianconi G, Criado R, del Genio C, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122

    Article  MathSciNet  Google Scholar 

  • Browning T (2001) Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEE Trans Eng Manage 48(3):292–306

    Article  Google Scholar 

  • Crowther KG, Haimes YY (2005) Application of the inoperability inputoutput model (iim) for systemic risk assessment and management of interdependent infrastructures. Syst Eng 8(4):323–341

    Article  Google Scholar 

  • D’Agostino G, Scala A (2014) Networks of networks: the last frontier of complexity, understanding complex systems. Springer, Cham

    Book  Google Scholar 

  • D’Agostino G, Scala A, Zlatic V, Caldarelli G (2012) Robustness and assortativity for diffusion-like processes in scale-free networks. EPL (Europhys Lett) 97(6):68006

    Article  Google Scholar 

  • Eppinger S (2001) Innovation at the speed of information. Harv Bus Rev 79:149–158

    Google Scholar 

  • Eppinger S, Browning T (2012) Design structure matrix methods and applications. MIT Press, Cambridge

    Google Scholar 

  • Estivill-Castro V (2002) Why so many clustering algorithms: a position paper. SIGKDD Explor News 4(1):65–75

    Article  MathSciNet  Google Scholar 

  • Huang X, Vodenska I, Havlin S, Stanley HE (2013) Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci Rep 3:e1219

    Google Scholar 

  • Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Comp Netw 2:203–271

    Article  Google Scholar 

  • Kröger W, Zio E (2011) Conceptual frameworks for vulnerability assessment. In: Vulnerable systems. Springer, London, pp 55–64

    Chapter  Google Scholar 

  • Kuramoto Y (1975) Self-entrainment of a population of coupled non-linear oscillators. In: Araki H (ed) International symposium on mathematical problems in theoretical physics, volume 39 of lecture notes in physics. Springer, Berlin/Heidelberg, pp 420−422

    Google Scholar 

  • Leontief WW (1987) Input-output economics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Li C, Wang H, Van Mieghem P (2013) Epidemic threshold in directed networks. Phys Rev E 88:062802

    Article  Google Scholar 

  • Martin-Hernandez J, Wang H, Mieghem PV, D’Agostino G (2014) Algebraic connectivity of interdependent networks. Phys A Stat Mech Appl 404:92–105

    Article  MathSciNet  Google Scholar 

  • Pahwa S, Scoglio C, Scala A (2014) Abruptness of cascade failures in power grids. Sci Rep 4:e3694

    Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    Article  Google Scholar 

  • Pecora LM, Carroll TL (1998) Master stability functions for synchronized coupled systems. Phys Rev Lett 80:2109–2112

    Article  Google Scholar 

  • Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding and analyzing critical infrastructure interdependencies. IEEE Control Syst Mag 21(6):11–25

    Article  Google Scholar 

  • von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New York. ISBN 0-8076-0453-4, revised edition

    Google Scholar 

  • Wang Y, Chakrabarti D, Wang C, Faloutsos C (2003) Epidemic spreading in real networks: an eigenvalue viewpoint. In: 22nd symposium on reliable distributed systems (SRDS 2003), Florence, 6–8 Oct 2003, pp 25–34

    Google Scholar 

Download references

Acknowledgments

AS and GD acknowledge the support from EU HOME/2013/CIPS/AG/4000005013 project CI2C. AS acknowledges the support from CNR-PNR National Project “Crisis-Lab”, from EU FET project DOLFINS nr 640772 and EU FET project MULTIPLEX nr.317532. GD acknowleges the support from FP7 project n.261788 AFTER. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessary reflect the views of the funding parties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Scala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

D’Agostino, G., Scala, A. (2016). Systemic Interdependencies. In: Bainbridge, W., Roco, M. (eds) Handbook of Science and Technology Convergence. Springer, Cham. https://doi.org/10.1007/978-3-319-07052-0_14

Download citation

Publish with us

Policies and ethics