Skip to main content

The Kinematics of Containment

  • Chapter
  • First Online:
Advances in Robot Kinematics

Abstract

This chapter is concerned with two problems related to what we call the kinematics of containment: (1) Given a small convex body in \(n\)-dimensional Euclidean space, such as an ellipsoid, that is contained inside of a large convex body, characterize the range of allowable motions for which the boundaries of the bodies do not collide, and calculate the corresponding volume of this motion in the group of rigid-body motions, \(SE(n)\); (2) If the smaller body is almost the size of the larger one, and can only execute small collision-free motions, analyze the range of these motions. Both of these problems are addressed fully here. The first uses methods of the fields of Integral Geometry and Geometric Probability and derives an expression similar to the so-called Principal Kinematic Formula. The second uses the kinematics of infinitesimal motions and properties of ellipsoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeles, J.: Rational Kinematics. Springer, New York (1988/2011)

    Google Scholar 

  2. Blaschke, W.: Vorlesungen Über Integralgeometrie. VEB Dt. Verlag d Wiss., Berlin (1955)

    MATH  Google Scholar 

  3. Boothroyd, G., Redford, A.H.: Mechanized Assembly: Fundamentals of Parts Feeding, Orientation, and Mechanized Assembly. McGraw-Hill, New York (1968)

    Google Scholar 

  4. Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications, New York (2011)

    Google Scholar 

  5. Chirikjian, G.S.: Parts entropy and the principal kinematic formula. In: IEEE International Conference on Automation Science and Engineering, CASE 2008, pp. 864–869. IEEE (2008)

    Google Scholar 

  6. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications. Springer, Birkhäuser (2012)

    Google Scholar 

  7. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic Analysis. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  8. Glasauer, S.: Translative and kinematic integral formulae concerning the convex hull operation. Mathematische Zeitschrift 229(3), 493–518 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodey, P., Weil, W.: Translative integral formulae for convex bodies. aequationes mathematicae 34(1), 64–77 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Groemer, H.: On translative integral geometry. Archiv der Mathematik 29(1), 324–330 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karnik, M., Gupta, S.K., Magrab, E.B.: Geometric algorithms for containment analysis of rotational parts. Comput. Aided Des. 37(2), 213–230 (2005)

    Article  Google Scholar 

  12. Klain, D.A., Rota, G.C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (et). In: Forty-fifth IEEE Conference on Decision and Control, pp. 1498–1503. IEEE (2006)

    Google Scholar 

  14. McCarthy, J.M.: Introduction to Theoretical Kinematics. MIT Press/iTunes, Boston (1990/2013)

    Google Scholar 

  15. Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. IEEE Trans. Syst. Man Cybern. Part B Cybern 32(4), 430–442 (2002)

    Article  Google Scholar 

  16. Sanderson, A.: Parts entropy methods for robotic assembly system design. In: Proceedings of the 1984 IEEE International Conference on Robotics and Automation (ICRA ’84), pp. 600–608 (1984)

    Google Scholar 

  17. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  18. Schneider, R., Weil, W.: Translative and kinematic integral formulae for curvature measures. Mathematische Nachrichten 129(1), 67–80 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, New York (2008)

    Book  MATH  Google Scholar 

  20. Weil, W.: Translative integral geometry. In: Hübler, A.,et al. (eds.) Geobild 89, pp. 75–86. Akademie-Verlag, Berlin (1989)

    Google Scholar 

  21. Zhang, G.: A sufficient condition for one convex body containing another. Chin. Ann. Math. Ser. B 9(4), 447–451 (1988)

    MATH  Google Scholar 

  22. Zhou, J.: When can one domain enclose another in \({\mathbb{R}}^3\)? J Aust Math Soc A 59(2), 266–272 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chirikjian, G.S., Yan, Y. (2014). The Kinematics of Containment. In: Lenarčič, J., Khatib, O. (eds) Advances in Robot Kinematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06698-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06698-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06697-4

  • Online ISBN: 978-3-319-06698-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics