Skip to main content

Fundamentals on Adsorption, Membrane Filtration, and Advanced Oxidation Processes for Water Treatment

  • Chapter
  • First Online:
Nanotechnology for Water Treatment and Purification

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 22))

Abstract

Water treatment is the processing of water to meet or achieve specified goals or standards set by regulatory agencies and end users. New water treatment technologies are being developed that need to be evaluated on a fundamental scientific and practical basis compared to traditional remediation processes. Recent advances in nanomaterial development for water treatment in the areas of filtration membranes, high surface area adsorbents, and efficient photocatalysts require approval for their effectiveness and safeness. Fundamental theories and concepts discussed in this chapter pertain to the areas of (i) adsorption and equilibrium isotherms (ii) pressure-driven membrane filtration and its rejection mechanisms for filtration and reverse osmosis processes; and (iii) advanced oxidation processes with a focus on semiconductor photocatalytic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Hazen, Clean Water and How to Get It (Wiley, New York, 1909)

    Google Scholar 

  2. G.W. Fuller, Progress in water purification. J. AWWA 25(11), 1566–1576 (1933)

    Google Scholar 

  3. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1), 1–59 (2009)

    Google Scholar 

  4. S.D. Richardson, A.D. Thurston, T.W. Collette, K.S. Patterson, B.W. Lykins, J.C. Ireland, Identification of TiO2/UV disinfection byproducts in drinking water. Environ. Sci. Technol. 30, 3327–3334 (1996)

    Google Scholar 

  5. S. Suárez, M. Carballa, F. Omil, J.M. Lema, How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev. Environ. Sci. Biotechnol. 7, 125–138 (2008)

    Google Scholar 

  6. T. Wintgens, F. Salehi, R. Hochstrat, T. Melin, Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci. Technol. 57(1), 99–107 (2008)

    Google Scholar 

  7. L. Bousselmi, S.U. Geissen, H. Schroeder, Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia. Water Sci. Technol. 49(4), 331–337 (2004)

    Google Scholar 

  8. S. Mozia, M. Tomaszewska, A.W. Morawski, Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—effectiveness of removal of three azo dyes from water. Catal. Today 129(1–2), 3–8 (2007)

    Google Scholar 

  9. V. Belgiorno, V. Naddeo, L. Rizzo, Water, Wastewater and Soil Treatment by Advance Oxidation Processes (Lulu, Raleigh, NC, 2011)

    Google Scholar 

  10. L. Rizzo, S. Meric, M. Guida, D. Kassinos, V. Belgiorno, Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 43(16), 4070–4078 (2009)

    Google Scholar 

  11. S.A. Snyder, P. Westerhoff, Y. Yoon, D.L. Sedlak, Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 20(5), 449–469 (2003)

    Google Scholar 

  12. J. Theron, J.A. Walker, T.E. Cloete, Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2008)

    Google Scholar 

  13. J.W. Hassler, Activated Carbon (Chemical Publishing, New York, 1974)

    Google Scholar 

  14. M.N. Baker, The Quest for Pure Water, vol. 1, 2nd edn. (American Water Works Association, Denver, CO, 1981)

    Google Scholar 

  15. H. Sontheimer, J.C. Critenden, R.S. Summers, Activated Carbon for Water Treatment, 2nd edn. (DVGW-Forschumgsstelle, University of Karlsruhe, Germany, 1988). Distributed in the US by the American Water Works Association

    Google Scholar 

  16. R.S. Summers, D.R.U. Knappe, V.L. Snoeyink, Adsorption of organic compounds by activated carbon, in Water Quality and Treatment, ed. by J.K. Edzwald, 5th edn. (McGraw-Hill and American Water Works Association, New York, 2010)

    Google Scholar 

  17. Z.K. Chowdhury, R.S. Summers, G.P. Westerhoff, B.J. Leto, K.O. Nowack, C.J. Corwin, L.B. Passantino, Activated Carbon: Solutions for Improving Water Quality (American Water Works Association, Denver, CO, 2013)

    Google Scholar 

  18. G. Nemethy, H.A. Scherage, Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. Chem. Phys. 36, 3382–3401 (1962)

    Google Scholar 

  19. M. Terrones, Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Ann. Rev. Mater. Res. 33, 419–501 (2003)

    Google Scholar 

  20. C. Kemp, H. Seema, M. Saleh, H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using grapheme composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013)

    Google Scholar 

  21. T.T. Teng, L.W. Low, Removal of dyes and pigments from industrial effluents, in Advances in Water Treatment and Pollution Prevention, ed. by S.K. Sharma, R. Sanghi (Springer, The Netherlands, 2012)

    Google Scholar 

  22. J.C. Crittenden, R.R. Trussel, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH’s Water Treatment—Principles and Design, 3rd edn. (John Wiley & Sons, 2012)

    Google Scholar 

  23. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006)

    Google Scholar 

  24. G. McKay, J.F. Porter, G.R. Prasad, The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut. 114, 423–438 (1999)

    Google Scholar 

  25. B.H. Hameed, Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater. 162, 939–944 (2009)

    Google Scholar 

  26. Y.H. Magdy, A.A.M. Daifullah, Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud. Waste Manag. 18, 219–226 (1998)

    Google Scholar 

  27. B.H. Hameed, Grass waste: a novel sorbent for the removal of basic dye form aqueous solution. J. Hazard. Mater. 166, 233–238 (2009)

    Google Scholar 

  28. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf. A 316, 78–84 (2008)

    Google Scholar 

  29. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164, 870–875 (2009)

    Google Scholar 

  30. N.A. Oladoja, I.O. Asia, C.O. Aboluwoye, Y.B. Oladimeji, A.O. Ashogbon, Studies on the sorption of basic dye by rubber (Hevea brasiliensis) seed shell. Turk. J. Eng. Environ. Sci. 32, 143–152 (2008)

    Google Scholar 

  31. D.S. Sun, X.D. Zhang, Y.D. Wu, X. Liu, Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater. 181, 335–342 (2010)

    Google Scholar 

  32. T.C. Hsu, Adsorption of an acid dye onto coal fly ash. Fuel 87, 3040–3045 (2008)

    Google Scholar 

  33. S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, Adsorption of dissolved reactivered dye from aqueous phase onto activated carbon prepared from agricultural waste. Bio. Resour. Technol. 97, 1618–1625 (2006)

    Google Scholar 

  34. C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, Removal of methylene blue from colored effluents by adsorption on momtmorillonite clay. J. Colloid Interface Sci. 332, 46–53 (2009)

    Google Scholar 

  35. S. Hong, C. Wen, J. He, F. Gan, Y.S. Ho, Adsorption thermodynamics of methylene blue onto bentonite. J. Hazard. Mater. 167, 630–633 (2009)

    Google Scholar 

  36. M. Hajjaji, A. Alami, A. El-Bouadili, Removal of methylene blue from aqueous solution by fibrous clay minerals. J. Hazard. Mater. 135, 188–192 (2006)

    Google Scholar 

  37. A. Al-Futaisi, A. Jamrah, R. Al-Hanai, Aspects of cationic dye molecule adsorption to palygorskite. Desalination 214, 327–342 (2007)

    Google Scholar 

  38. S. Chakrabarti, B.K. Dutta, Note on the adsorption and diffusion of methylene blue in glass fibers. J. Colloid Interface Sci. 286, 807–811 (2005)

    Google Scholar 

  39. V. Vimonses, S.M. Lei, B. Jin, C.W.K. Chow, C. Saint, Adsorption of Congo red by three Australian kaolins. Appl. Clay. Sci. 43, 465–472 (2009)

    Google Scholar 

  40. K. Marungrueng, P. Pavasant, High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour. Technol. 98, 1567–1572 (2007)

    Google Scholar 

  41. O. Gulnaz, A. Kaya, F. Matyar, B. Arikan, Sorption of basic dyes from aqueous solution by activated sludge. J. Hazard. Mater. 108, 183–188 (2004)

    Google Scholar 

  42. E. Rubin, P. Rodriguez, R. Herrero, J. Cremades, I. Barbara, M.E. Sastre de Vicente, Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe. J. Chem. Technol. Biotechnol. 80, 291–298 (2005)

    Google Scholar 

  43. A. El-Sikaily, A. Khaled, A. El-Nemr, O. Abdelwahab, Removal of methylene blue from aqueous solution by marine green alga Ulva lactuca. Chem. Ecol. 22, 149–157 (2006)

    Google Scholar 

  44. D. Caparkaya, L. Cavas, Biosorption of methylene blue by a brown alga Cystoseira barbatula Kutzing. Acta. Chim. Solv. 55, 547–553 (2008)

    Google Scholar 

  45. M.C. Ncibi, A.M.D. Hamissa, A. Fathallah, M.H. Kortas, T. Baklouti, B. Mahjoub, M. Seffen, Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp. J. Hazard. Mater. 170, 1050–1055 (2009)

    Google Scholar 

  46. T. Akar, A.S. Ozcan, S. Tunali, A. Ozcan, Biosorption of a textile dye (Acid Blue 40) by cone biomass of Thuja orientalis: estimation of equilibrium, thermodynamic and kinetic parameters. Bioresour. Technol. 99, 3057–3065 (2008)

    Google Scholar 

  47. N.S. Maurya, A.K. Mittal, P. Cornel, E. Rother, Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour. Technol. 97, 512–521 (2006)

    Google Scholar 

  48. K. Kumari, T.E. Abraham, Biosorption on anionic textile dyes by nonviable biomass of fungi and yeast. Bioresour. Technol. 98, 1704–1710 (2007)

    Google Scholar 

  49. M.P. Elizalde-González, L.E. Fuentes-Ramírez, M.R.G. Guevara-Villa, Degradation of immobilized azo dyes by Klebsiella sp. UAP-b5 isolated from maize bioadsorbent. J. Hazard. Mater. 161, 769–774 (2009)

    Google Scholar 

  50. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40, 1361–1402 (1918)

    Google Scholar 

  51. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Google Scholar 

  52. H. Freundlich, Groundwater Pollution (Elsevier Scientific, Amsterdam, 1975)

    Google Scholar 

  53. G.D. Halsey, H.S. Taylor, Adsorption of hydrogen on tungsten powders. J. Chem. Phys. 15, 624–630 (1947)

    Google Scholar 

  54. O. Redlich, O. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63, 1024 (1959)

    Google Scholar 

  55. M.R. Wiesner, S. Chellam, Mass transport considerations for pressure-driven membrane processes. J. AWWA 84(1), 88–95 (1992)

    Google Scholar 

  56. K. Li, Ceramic Membranes for Separation and Reaction (Wiley, West Sussex, England, 2007)

    Google Scholar 

  57. M. Mulder, Basic Principles of Membrane Technology (Kluwer, The Netherlands, 1996)

    Google Scholar 

  58. K.J. Laidler, J.H. Meiser, Physical Chemistry (Houghton Mifflin, Boston, MA, 1999)

    Google Scholar 

  59. H.F. Ridgway, H.F. Flemming, Membrane biofouling, in Water Treatment Membrane Processes, ed. by J. Mallevialle, P.E. Odendaal, M.R. Wiesner (McGraw-Hill, New York, 1996)

    Google Scholar 

  60. G. Crozes, C. Anselme, J. Mallevialle, Effect of adsorption of organic matter on fouling of ultra filtration membranes. J. Memb. Sci. 84(1–2), 61–77 (1993)

    Google Scholar 

  61. V. Lahoussine-Turcaud, M.R. Wiesner, J.Y. Bottero, Fouling in tangential-flow ultra filtration: the effect of colloid size and coagulation pretreatment. J. Memb. Sci. 52(2), 173–190 (1990)

    Google Scholar 

  62. C.F. Lin, T.Y. Lin, O.J. Hao, Effects of humic substance characteristics on UF performance. Water Res. 34(4), 1097–1106 (2000)

    Google Scholar 

  63. T. Carroll, S. King, S.R. Gray, B.A. Bolto, N.A. Booker, Fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 34(11), 2861–2868 (2000)

    Google Scholar 

  64. K.J. Howe, Effect of Coagulation Pretreatment on Membrane Filtration Performance, Ph.D. Thesis (University of Illonois at Urbana-Champaign, Urbana, IL, 2001)

    Google Scholar 

  65. W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn. (Wiley, New York, 1996)

    Google Scholar 

  66. J.J. Pignatello, E. Oliveros, A. Mackay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36(1), 1–84 (2006)

    Google Scholar 

  67. Solarchem Environmental Systems, The UV/ Oxidation Handbook (Solarchem Environmental Systems, Markham, ON, 1994)

    Google Scholar 

  68. F.J. Beltran, Ozone Reaction Kinetics for Water and Wastewater Systems (Lewis, Boca Raton, FL, 2004)

    Google Scholar 

  69. H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron. Chem. Soc. H. Lond. 65, 899–910 (1894)

    Google Scholar 

  70. M.R. Hoffmann, I. Hua, R. Höchemer, Application of ultrasonic irradiation for degradation of chemical contaminants. Water. Ultrason. Sonochem. 3, S163–S172 (1996)

    Google Scholar 

  71. C. Gottschalk, J.A. Libra, A. Saupe, Ozonation of Water and Waste Water (Wiley-VCH, New York, 2000)

    Google Scholar 

  72. J. Hoigné, H. Bader, The role of hydroxyl radical reactions in ozonation process in aqueous solutions. Water Res. 10(5), 377–386 (1976)

    Google Scholar 

  73. W.H. Glaze, J. Kang, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J. AWWA 81(5), 57–63 (1988)

    Google Scholar 

  74. P. Westerhoff, G. Aiken, G. Amy, J. Debroux, Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33(10), 2265–2276 (1999)

    Google Scholar 

  75. P. Westerhoff, S.P. Mazyk, W.J. Cooper, D. Minakata, Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ. Sci. Technol. 41, 4640–4646 (2007)

    Google Scholar 

  76. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–600 (1929)

    Google Scholar 

  77. L. Brillouin, Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes. C. R. Hebd. Seances Acad. Sci. 191, 292 (1930)

    Google Scholar 

  78. A.J. Dekker, Solid State Physics (Prentice-Hall, Englewood Cliffs, NJ, 1957)

    Google Scholar 

  79. H. Gerischer, An advanced treatise, in Physical Chemistry, vol. IX, ed. by H. Eyring, D. Henderson, W. Host (Academic Press, New York, 1970)

    Google Scholar 

  80. F. Lohmann, Fermi-Niveau und flachbandpotential von molekülkristallen aromatischer kohlenwasserstoffe. Z. Naturforsch. Teil. A 22, 843–844 (1967)

    Google Scholar 

  81. Y.V. Pleskov, Y.Y. Gurevich, Semiconductor Photoelectrochemistry (Consultants Bureau, New York, 1986)

    Google Scholar 

  82. R. Memming, Photoinduced charge transfer processes at semiconductor electrodes and particles. Top. Curr. Chem. 169, 105–181 (1994)

    Google Scholar 

  83. A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10, 59–75 (1979)

    Google Scholar 

  84. P. Meriaudeau, J.C. Vedrine, Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O3-3 species. J. Chem. Soc. Faraday Trans. 72, 472–480 (1976)

    Google Scholar 

  85. W.R. Murphy, T.H. Veerkamp, T.W. Leland, Effect of ultraviolet radiation on zinc oxide catalysts. J. Catal. 43, 304–321 (1976)

    Google Scholar 

  86. N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir 14, 5918–5920 (1998)

    Google Scholar 

  87. R. Wang, N. Wakai, A. Fujishima, T. Watanabe, K. Hashimoto, Studies of surface wettability conversion on TiO2 single-crystal surfaces. J. Phys. Chem. B 103, 2188–2194 (1999)

    Google Scholar 

  88. W.C. Wu, L.F. Liao, J.S. Shiu, J.L. Lin, FTIR study of interactions of ethyl iodide with powdered TiO2. Phys. Chem. Chem. Phys. 2, 4441–4446 (2000)

    Google Scholar 

  89. A. Emeline, A. Salinaro, V.K. Ryabchuk, N. Serpone, Photoinduced processes in heterogeneous nanosystems. From photoexcitation to interfacial chemical transformations. Int. J. Photoenergy 3, 1–16 (2001)

    Google Scholar 

  90. V. Ryabchuk, Photophysical processes related to photoadsorption and photocatalysis on wide band gap solids: a review. Int. J. Photoenergy 6, 95–113 (2004)

    Google Scholar 

  91. V. Augugliaro, L. Vittorio, M. Pagliaro, G. Palmisano, L. Palmisano, Clean by Light Irradiation: Practical Applications of Supported TiO 2 (RSC Publishing, Cambridge, UK, 2010)

    Google Scholar 

  92. G. Palmisano, V. Loddo, S. Yurdakal, V. Auguliaro, L. Palmisano, Reaction pathways and kinetics of photocatalytic oxidation of nitrobenzene and phenylamine in aqueous TiO2 suspensions. AIChE J. 53, 961–968 (2007)

    Google Scholar 

  93. A. Gora, B. Toepfer, V. Puddu, G. Li Puma, Photocatalytic oxidation of herbicides in single-component and multicomponent systems: reaction kinetics analysis. Appl. Catal. B 65, 1–10 (2006)

    Google Scholar 

  94. H. De Lasa, B. Serrano, M. Salaices, Photocatalytic Reaction Engineering (Springer, New York, 2005)

    Google Scholar 

  95. H. Ibrahim, H. De Lasa, Kinetic modeling of the photocatalytic degradation of air-bourne pollutants. AIChE J. 50, 1017–1027 (2004)

    Google Scholar 

  96. A. Fujishima, X.T. Zhang, D.A. Tryk, TiO(2) photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008)

    Google Scholar 

  97. Z.B. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102(52), 10871–10878 (2012)

    Google Scholar 

  98. J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300–304 (2007)

    Google Scholar 

  99. A. Hu, R. Liang, X. Zhang, S. Kurdi, D. Luong, H. Huang, P. Peng, E. Marzbanrad, K.D. Oakes, Y. Zhou, M.R. Servos, Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J. Photochem. Photobiol. A: Chem. 256(15), 7–15 (2013)

    Google Scholar 

  100. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11(3), 401–425 (2007)

    Google Scholar 

  101. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J. Phys. Chem. C 113(8), 3062–3069 (2009)

    Google Scholar 

  102. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152 (2009)

    Google Scholar 

  103. H. Kominami, K. Yabutani, T. Yamamoto, Y. Kara, B. Ohtani, Synthesis of highly active tungsten(VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J. Mater. Chem. 11(12), 3222–3227 (2001)

    Google Scholar 

  104. R. Lof, M. Van Veenendaal, H. Jonkman, G. Sawatzky, Band gap, excitons and Coulomb interactions of solid C 60. J. Electron Spectrosc. Related Phenomena 72, 83–87 (1995)

    Google Scholar 

  105. L. Brunet, D.Y. Lyon, E.M. Hotze, P.J.J. Alvarez, M.R. Wiesner, Comparative photoactivity and antibacterial properties of C-60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Tech. 43, 4355–4360 (2009)

    Google Scholar 

  106. J.M. Herrmann, Photocatalysis fundamentals revisited to avoid several misconceptions. App. Catal. B: Environ. 99, 461–469 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liang, R., Hu, A., Hatat-Fraile, M., Zhou, N. (2014). Fundamentals on Adsorption, Membrane Filtration, and Advanced Oxidation Processes for Water Treatment. In: Hu, A., Apblett, A. (eds) Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06578-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06578-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06577-9

  • Online ISBN: 978-3-319-06578-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics