Skip to main content

Production of Volatile Organic Compounds in PGPR

  • Chapter
Handbook for Azospirillum

Abstract

Bacteria affect plant growth through several mechanisms. A recently described mechanism involves the production of microbial volatile organic compounds (mVOCs), which are gaseous molecules capable of interacting with plants in the soil environment. mVOCs may promote plant growth directly, through induced resistance systemic (ISR), or indirectly through suppression of phytopathogens (biocontrol). In this chapter, we describe several experimental designs for evaluation of mVOCs effects on plant growth, ISR or biocontrol mechanisms; potential problems with the methodologies and possible solutions. To date, relatively few mVOCs have been identified and their effects on plant growth characterized. Generally, the effect observed on a particular plant–bacterium interaction was attributed to the pool of mVOCs produced, like an evidence of synergism among chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angle J, McGrath S, Chaney R (1991) New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 57:3674–3676

    PubMed Central  CAS  PubMed  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57(2):653–657

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee, YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067−1075

    Google Scholar 

  • Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J et al (2009) SuperScent—a database of flavors and scents. Nucleic Acids Res 37:291–294

    Article  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernando DW, Ramarathnam R, Krishnamoorthy A, Savchuk S (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY et al (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture Experiment Station Circular no. 347, Berkeley, p 347–353

    Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles—an effect of CO2? FEBS Lett 583(21):3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One. doi:10.1371/journal.pone.0048744

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nawrath T, Mgode GF, Weetjens B, Kaufmann SHE, Schulz S (2012) The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein J Org Chem 8:290–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed Central  PubMed  Google Scholar 

  • Park HB, Lee B, Kloepper JW, Ryu CM (2013) One shot-two pathogens blocked. Exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8(7):e24619. doi:10.4161/psb.24619

    Article  PubMed  Google Scholar 

  • Radruppa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3(2):130–138

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles trigger induced systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Paré PW, Kloepper JW (2005) Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol 21(1):7–12

    Article  Google Scholar 

  • Sang MK, Kim JD, Kim BS, Kim KD (2011) Roottreatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathol 101:666−678

    Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:177–1082

    Article  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Article  PubMed Central  PubMed  Google Scholar 

  • Thorn RM, Reynolds DM, Greenman J (2011) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258–264

    Article  CAS  PubMed  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2011) Detection of potential volatile inhibitory compounds produced by endobacteria with biocontrol properties towards Fusarium oxysporum f. sp. cubense race 4. World J Microbiol Biotechnol 27:229–235

    Article  Google Scholar 

  • Tonelli ML, Taurian T, Ibáñez F, Angelini J, Fabra A (2010) Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J Plant Pathol 92(1):73–82

    Google Scholar 

  • Valduga E, Valerio A, Treichel H, Nascimento Filho I, Fúrigo Júnior A, Di Luccio M (2010) Head Space Solid Phase Micro-Extraction (HS-SPME) of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636). Ciênc Tecnol Aliment 30(4):987–992

    Article  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4(10):948–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Crimson M et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008a) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008b) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Banchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santoro, M., Cappellari, L., Giordano, W., Banchio, E. (2015). Production of Volatile Organic Compounds in PGPR. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_17

Download citation

Publish with us

Policies and ethics