Skip to main content

Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

The main motivation of the present chapter is to clarify the notions of signal phase in optical coherence tomography (OCT) and to introduce the reader to the problem of phase-sensitive Fourier domain (Fd)OCT detection and complex FdOCT signal formation. The availability of signal phase information due to the coherent signal detection is one of the most important advantages of OCT. A particular advantage of FdOCT is the possibility of having direct access to the spectral fringe pattern, enabling a wide range of novel applications such as tissue absorption measurement and tissue contrast enhancement. Additionally, the high speed combined with simultaneous registration of all spectral components (spectral OCT) provides stable phase information. We discuss the meaning of complex signal content and the implications of complex FdOCT signal reconstruction for cross-sectional image formation. We also demonstrate the potential of phase-sensitive FdOCT techniques for improving the quality of FdOCT reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  2. G. Hausler, M.W. Linduer, Coherence radar and spectral radar-new tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)

    Article  ADS  Google Scholar 

  3. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  4. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  5. M.A. Choma, M.V. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  7. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28, 1745–1747 (2003)

    Article  ADS  Google Scholar 

  8. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, J.F. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12, 367–376 (2004)

    Article  ADS  Google Scholar 

  9. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)

    Article  ADS  Google Scholar 

  10. F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 36, 6548–6553 (1997)

    Article  ADS  Google Scholar 

  11. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, J.F. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength. Opt. Express 11, 3598–3604 (2003)

    Article  ADS  Google Scholar 

  12. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28, 1981–1983 (2003)

    Article  ADS  Google Scholar 

  13. S.H. Yun, C. Boudoux, M.C. Pierce, J.F. de Boer, G.J. Tearney, B.E. Bouma, Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Photon Technol. Lett. 16, 293–295 (2004)

    Article  ADS  Google Scholar 

  14. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  ADS  Google Scholar 

  15. R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2006)

    Article  ADS  Google Scholar 

  16. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22, 340–342 (1997)

    Article  ADS  Google Scholar 

  17. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10, 44009 (2005)

    Article  Google Scholar 

  18. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, C. Radzewicz, Ophthalmic imaging by spectral optical coherence tomography. Am J. Ophthalmol. 138, 412–419 (2004)

    Article  Google Scholar 

  19. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112, 1734–1746 (2005)

    Article  Google Scholar 

  20. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005)

    Article  Google Scholar 

  21. B.J. Kaluzny, J.J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Spectral optical coherence tomography: a new imaging technique in contact lens practice. Ophthalmic Physiol. Opt. 26, 127–132 (2006)

    Article  Google Scholar 

  22. R.J. Zawadzki, S.M. Jones, S.S. Olivier, M.T. Zhao, B.A. Bower, J.A. Izatt, S. Choi, S. Laut, J.S. Werner, Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express 13, 8532–8546 (2005)

    Article  ADS  Google Scholar 

  23. Y. Yasuno, V.D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.P. Chan, M. Itoh, T. Yatagai, Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express 13, 10652–10664 (2005)

    Article  ADS  Google Scholar 

  24. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 25, 820–822 (2000)

    Article  ADS  Google Scholar 

  25. R.A. Leitgeb, B. Hermann, B. Povazay, H. Sattmann, S. Michels, U. Schmidt-Erfurt, W. Drexler, Spectroscopic analysis of the human retina using three-dimensional spectroscopic ultrahigh resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 46, 4273 (2005)

    Google Scholar 

  26. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11, 3116–3121 (2003)

    Article  ADS  Google Scholar 

  27. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, T. Bajraszewski, Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt. Lett. 29, 171–173 (2004)

    Article  ADS  Google Scholar 

  28. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11, 3490–3497 (2003)

    Article  ADS  Google Scholar 

  29. R.A. Leitgeb, C.K. Hitzenberger, A.F. Fercher, T. Bajraszewski, Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 28, 2201–2203 (2003)

    Article  ADS  Google Scholar 

  30. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A.F. Fercher, Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 27, 1415–1417 (2002)

    Article  ADS  Google Scholar 

  31. P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, A. Kowalczyk, Improved complex spectral domain OCT for in vivo eye imaging. Opt. Commun. 249, 357–362 (2005)

    Article  ADS  Google Scholar 

  32. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, W. Gorczynska, Complex spectral OCT in human eye imaging in vivo. Opt. Commun. 229, 79–84 (2004)

    Article  ADS  Google Scholar 

  33. A.M. Davis, M.A. Choma, J.A. Izatt, Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J. Biomed. Opt. 10, 64005 (2005)

    Article  Google Scholar 

  34. J. Zhang, J.S. Nelson, Z.P. Chen, Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt. Lett. 30, 147–149 (2005)

    Article  ADS  Google Scholar 

  35. J. Zhang, W.G. Jung, J.S. Nelson, Z.P. Chen, Full range polarization-sensitive Fourier domain optical coherence tomography. Opt. Express 12, 6033–6039 (2004)

    Article  ADS  Google Scholar 

  36. S.H. Yun, G.J. Tearney, J.F. de Boer, B.E. Bouma, Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express 12, 4822–4828 (2004)

    Article  ADS  Google Scholar 

  37. E. Gotzinger, M. Pircher, R.A. Leitgeb, C.K. Hitzenberger, High speed full range complex spectral domain optical coherence tomography. Opt. Express 13, 583–594 (2005)

    Article  ADS  Google Scholar 

  38. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, T. Yatagai, One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting. Opt. Express 12, 6184–6191 (2004)

    Article  ADS  Google Scholar 

  39. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, T. Yatagai, High-speed full-range Fourier domain optical coherence tomography by simultaneous B-M-mode scanning, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, ed. by V.V. Tuchin, J.A. Izatt, J.G. Fujimoto (SPIE, San Jose, 2005), pp. 137–142

    Chapter  Google Scholar 

  40. V. Westphal, A.M. Rollins, S. Radhakrishnan, Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt. Express 10, 397–404 (2002)

    Article  ADS  Google Scholar 

  41. R.J. Zawadzki, C. Leisser, R. Leitgeb, A.F. Fercher, 3D refraction corrected optical coherence tomography measurements of the anterior chamber in vitro. Invest. Ophthalmol. Vis. Sci. 44, U141–U141 (2003)

    Google Scholar 

  42. R. Ahrenkie, Modified Kramers-Kronig analysis of optical spectra. J. Opt. Soc. Am. 61, 1651 (1971)

    Article  ADS  Google Scholar 

  43. K.F. Palmer, M.Z. Williams, B.A. Budde, Multiply subtractive Kramers-Kronig analysis of optical data. Appl. Opt. 37, 2660–2673 (1998)

    Article  ADS  Google Scholar 

  44. D.J. Faber, M.C.G. Aalders, E.G. Mik, B.A. Hooper, M.J.C. van Gemert, T.G. van Leeuwen, Oxygen saturation-dependent absorption and scattering of blood. Phys. Rev. Lett. 93, 028102 (2004)

    Article  ADS  Google Scholar 

  45. S.M. Bagherzadeh, B. Grajciar, C.K. Hitzenberger, M. Pircher, A.F. Fercher, Dispersion-based optical coherence tomography OCT measurement of mixture concentrations. Opt. Lett. 32, 2924–2926 (2007)

    Article  ADS  Google Scholar 

  46. F.E. Robles, L.L. Satterwhite, A. Wax, Nonlinear phase dispersion spectroscopy. Opt. Lett. 36, 4665–4667 (2011)

    Article  ADS  Google Scholar 

  47. B. Grajciar, Y. Lehareinger, A.F. Fercher, R.A. Leitgeb, High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512,000 A-scan/s. Opt. Express 18, 21841–21850 (2010)

    Article  ADS  Google Scholar 

  48. B. Grajciar, M. Herdin, C. Blatter, M. Groeschl, R.A. Leitgeb, High-resolution phase mapping with parallel Fourier domain optical coherence microscopy for dispersion contrast imaging. Photonics Letters of Poland 3, 135–137 (2011)

    Article  Google Scholar 

  49. C. Blatter, B. Grajciar, P. Zou, W. Wieser, A.J. Verhoef, R. Huber, R.A. Leitgeb, Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. Opt. Lett. 37, 4368–4370 (2012)

    Article  ADS  Google Scholar 

  50. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, J.J. Kaluzny, Coherent noise-free ophthalmic imaging by spectral optical coherence tomography. J. Phys. D-Appl. Phys. 38, 2606–2611 (2005)

    Article  ADS  Google Scholar 

  51. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Flow velocity measurements by frequency domain short coherence interferometry, in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, ed. by V.V. Tuchin, J. Izatt, J.G. Fujimoto (SPIE, San Jose, 2002), pp. 16–21

    Chapter  Google Scholar 

  52. A.H. Bachmann, R.A. Leitgeb, T. Lasser, Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution. Opt. Express 14, 1487–1496 (2006)

    Article  ADS  Google Scholar 

  53. M.V. Sarunic, M.A. Choma, C.H. Yang, J.A. Izatt, Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers. Opt. Express 13, 957–967 (2005)

    Article  ADS  Google Scholar 

  54. M.A. Choma, C. Yang, J.A. Izatt, Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers. Opt. Lett. 28, 2162–2164 (2003)

    Article  ADS  Google Scholar 

  55. A.F. Fercher, R. Leitgeb, C.K. Hitzenberger, H. Sattmann, M. Wojtkowski, Complex spectral interferometry OCT, in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry II, ed. by G.B. Altshuler, S. Andersson-Engels, R. Birngruber, P. Bjerring, A.F. Fercher, H.J. Geschwind, R. Hibst, H. Hoenigsmann, F. Laffitte, H. Sterenborg (SPIE, 1999), pp. 173–178

    Google Scholar 

  56. K. Creath, Phase-measurement interferometry techniques. Prog. Opt. 26, 349–393 (1988)

    Article  Google Scholar 

  57. J. Schmit, K. Creath, Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. Appl. Opt. 34, 3610–3619 (1995)

    Article  ADS  Google Scholar 

  58. R.K. Wang, In vivo full range complex Fourier domain optical coherence tomography. Appl. Phys. Lett. 90, 054103 (2007)

    Article  ADS  Google Scholar 

  59. R. A. Leitgeb, R. Michaely, T. Lasser, S.C. Sekhar, Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. Opt. Lett. 32, 3453–3455 (2007)

    Article  ADS  Google Scholar 

  60. B. Baumann, M. Pircher, E. Götzinger, C.K. Hitzenberger, Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt. Express 15, 13375–13387 (2007)

    Article  ADS  Google Scholar 

  61. Y.K. Tao, A.M. Davis, J.A. Izatt, Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. Opt. Express 16, 12350–12361 (2008)

    Article  ADS  Google Scholar 

  62. L. An, J. Qin, R.K. Wang, Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt. Express 18, 8220–8228 (2010)

    Article  ADS  Google Scholar 

  63. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R.A. Leitgeb, A. Kowalczyk, M. Wojtkowski, Scanning protocols dedicated to smart velocity ranging in spectral OCT. Opt. Express 17, 23736–23754 (2009)

    Article  ADS  Google Scholar 

  64. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, M. Wojtkowski, Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography. Opt. Express 17, 10584–10598 (2009)

    Article  ADS  Google Scholar 

  65. D.Y. Kim, J. Fingler, J.S. Werner, D.M. Schwartz, S.E. Fraser, R.J. Zawadzki, In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2, 1504–1513 (2011)

    Article  Google Scholar 

  66. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, R.A. Leitgeb, In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed. Opt. Express 3, 2636–2646 (2012)

    Article  Google Scholar 

  67. T. Schmoll, A.S.G. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, R.A. Leitgeb, Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed. Opt. Express 2, 1159–1168 (2011)

    Article  Google Scholar 

  68. T. Schmoll, E. Götzinger, M. Pircher, C.K. Hitzenberger, R.A. Leitgeb, Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding. Opt. Lett. 35, 241–243 (2010)

    Article  ADS  Google Scholar 

  69. T. Schmoll, C. Kolbitsch, R.A. Leitgeb, In vivo functional retinal optical coherence tomography. J. Biomed. Opt. 15, 041513–041518 (2010)

    Article  ADS  Google Scholar 

  70. J.W. Goodman, Statistical Optics (Wiley, New York, 1995)

    Google Scholar 

  71. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30, 1162–1164 (2005)

    Article  ADS  Google Scholar 

  72. S.H. Yun, G.J. Tearney, J.F. de Boer, B.E. Bouma, Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt. Express 12, 2977–2998 (2004)

    Article  ADS  Google Scholar 

  73. A.H. Bachmann, M.L. Villiger, C. Blatter, T. Lasser, R.A. Leitgeb, Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. Opt. Express 15, 408–422 (2007)

    Article  ADS  Google Scholar 

  74. S.H. Yun, G.J. Tearney, J.F. de Boer, B.E. Bouma, Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express 12, 5614–5624 (2004)

    Article  ADS  Google Scholar 

  75. C. Pache, N.L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M.I. Gibson, C. Santschi, T. Lasser, Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy. Opt. Express 20, 21385–21399 (2012)

    Article  ADS  Google Scholar 

  76. J. Oh, B. Kim, Artifacts removal in complex frequency domain optical coherence tomography with numerical least-square phase-shifting algorithm, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, ed. by V.V. Tuchin, J.A. Izatt, J.G. Fujimoto (SPIE, San Jose, 2005), pp. 132–136

    Chapter  Google Scholar 

  77. C.S. Seelamantula, M.L. Villiger, R.A. Leitgeb, M. Unser, Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25, 1762–1771 (2008)

    Article  ADS  Google Scholar 

  78. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, W. Drexler, Dispersion encoded full range frequency domain optical coherence tomography. Opt. Express 17, 7–24 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Andrzej Kowalczyk and Maciej Szkulmowski from NCU Torun for their assistance in the theoretical and experimental work on phase-sensitive SOCT. We also gratefully acknowledge helpful advices from Robert Zawadzki from UC Davis; Christoph Hitzenberger, Wolfgang Drexler, Leopold Schmetterer, and Michael Pircher from Medical University of Vienna; and Theo Lasser and Adrian Bachmann from EPFL Lausanne. We also would like to place special acknowledgments to Prof. Adolf Fercher for his scientific contribution and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer A. Leitgeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Leitgeb, R.A., Wojtkowski, M. (2015). Complex and Coherence-Noise Free Fourier Domain Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_7

Download citation

Publish with us

Policies and ethics