Skip to main content

Retinal AO OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

The last two decades have witnessed extraordinary advances in optical technology to image noninvasively and at high resolution the posterior segment of the eye. Two of the most impactful technological advancements over this period have arguably been optical coherence tomography (OCT) and adaptive optics (AO). The strengths of these technologies complement each other and when combined have been shown to provide unprecedented, micron-scale resolution (<3 μm) in all three dimensions and sensitivity to image the cellular retina in the living eye. This powerful extension of OCT, that is AO-OCT, is the focus of this chapter. It presents key aspects of designing and implementing AO-OCT systems. Particular attention is devoted to the relevant optical properties of the eye that ultimately define these systems, AO componentry and operation tailored for ophthalmic use, and of course use of the latest technologies and methods in OCT for ocular imaging. It surveys the wide range of AO-OCT designs that have been developed for retinal imaging, with AO integrated into every major OCT design configuration. Finally, it reviews the scientific and clinical studies reported to date that show the exciting potential of AO-OCT to image the microscopic retina and fundus in ways not previously possible with other noninvasive methods and a look to future developments in this rapidly growing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin et al., Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. W. Drexler, J.G. Fujimoto (eds.), Optical Coherence Tomography Technology and Applications (Springer, New York, 2008)

    Google Scholar 

  3. J. Liang, D.R. Williams, D.T. Miller, Supernormal vision and high resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14, 2884–2892 (1997)

    Article  ADS  Google Scholar 

  4. J. Porter, H. Queener, J. Lin, K. Thorn, A. Awwal (eds.), Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, New York, 2006)

    Google Scholar 

  5. D.T. Miller, A. Roorda, Adaptive optics in retinal microscopy and vision, in Handbook of Optics Volume III, ed. by M. Bass, J.M. Enoch, V. Lakshminarayanan (McGraw Hill, New York, 2009), pp. 15.1–15.30

    Google Scholar 

  6. V. Larichev, P.V. Ivanov, N.G. Iroshnikov, V.I. Shmalhauzen, L.J. Otten, Adaptive system for eye-fundus imaging. Quantum Electron. 32, 902–908 (2002)

    Article  ADS  Google Scholar 

  7. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, W. Jiang, Small table-top adaptive optical systems for human retinal imaging, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, ed. by J.D. Gonglewski, M.A. Vorontsov, M.T. Gruneisen, S.R. Restaino, R.K. Tyson. Proc. SPIE, 4825 (2002), pp. 99–108

    Google Scholar 

  8. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.F. Le Gargasson, P. Lena, Towards wide-field imaging with AO. Opt. Commun. 230, 225–238 (2004)

    Article  ADS  Google Scholar 

  9. J. Rha, R.S. Jonnal, K.E. Thorn, J. Qu, Y. Zhang, D.T. Miller, AO flood-illumination camera for high speed retinal imaging. Opt. Express 14, 4552–4569 (2006)

    Article  ADS  Google Scholar 

  10. A. Roorda, F. Romero-Borja, W.J. Donnelly, H. Queener, T.J. Hebert, M.C.W. Campbell, AO scanning laser ophthalmoscopy. Opt. Express 10, 405–412 (2002)

    Article  ADS  Google Scholar 

  11. Y. Zhang, S. Poonja, A. Roorda, MEMS-based AO scanning laser ophthalmoscopy. Opt. Lett. 31, 1268–1270 (2006)

    Article  ADS  Google Scholar 

  12. D.C. Gray, W. Merigan, J.I. Wolfing, B.P. Gee, J. Porter, A. Dubra, T.H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, D.R. Williams, In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt. Express 14, 7144–7158 (2006)

    Article  ADS  Google Scholar 

  13. D.X. Hammer, R.D. Ferguson, C.E. Bigelow, N.V. Iftimia, T.E. Ustun, S.A. Burns, AO scanning laser ophthalmoscope for stabilized retinal imaging. Opt. Express 14, 3354–3367 (2006)

    Article  ADS  Google Scholar 

  14. K. Grieve, P. Tiruveedhula, Y. Zhang, A. Roorda, Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope. Opt. Express 14, 12230–12242 (2006)

    Article  ADS  Google Scholar 

  15. S.A. Burns, R. Tumbar, A.E. Elsner, D. Ferguson, D.X. Hammer, Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A 24, 1313–1326 (2007)

    Article  ADS  Google Scholar 

  16. D.T. Miller, J. Qu, R.S. Jonnal, K. Thorn, Coherence gating and AO in the eye, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, ed. by V. Valery, V. Tuchin, J.A. Izatt, J.G. Fujimoto. Proc. SPIE, 4956 (2003), pp. 65–72

    Google Scholar 

  17. B. Hermann, E.J. Fernández, A. Unterhuber, H. Sattmann, A.F. Fercher, W. Drexler, P.M. Prieto, P. Artal, Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29, 2142–2144 (2004)

    Article  ADS  Google Scholar 

  18. Y. Zhang, J. Rha, R.S. Jonnal, D.T. Miller, AO parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Express 13, 4792–4811 (2005)

    Article  ADS  Google Scholar 

  19. R.J. Zawadzki, S. Jones, S.S. Olivier, M. Zhao, B.A. Bower, J.A. Izatt, S.S. Choi, S. Laut, J.S. Werner, Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express 13, 8532–8546 (2005)

    Article  ADS  Google Scholar 

  20. E.J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P.M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, Three-dimensional AO ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res. 45, 3432–3444 (2005)

    Article  Google Scholar 

  21. Y. Zhang, B. Cense, J. Rha, R.S. Jonnal, W. Gao, R.J. Zawadzki, J.S. Werner, S. Jones, S. Olivier, D.T. Miller, High-speed volumetric imaging of cone photoreceptors with AO spectral-domain optical coherence tomography. Opt. Express 14, 4380–4394 (2006)

    Article  ADS  Google Scholar 

  22. D. Merino, C. Dainty, A. Bradu, A.G. Podoleanu, Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt. Express 14, 3345–3353 (2006)

    Article  ADS  Google Scholar 

  23. C.E. Bigelow, N.V. Iftimia, R.D. Ferguson, T.E. Ustun, B. Bloom, D.X. Hammer, Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. J. Opt. Soc. Am. A 24, 1327–1336 (2007)

    Article  ADS  Google Scholar 

  24. M. Pircher, R.J. Zawadzki, J.W. Evans, J.S. Werner, C.K. Hitzenberger, Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. Opt. Lett. 33, 22–24 (2008)

    Article  ADS  Google Scholar 

  25. R.J. Zawadzki, B. Cense, Y. Zhang, S.S. Choi, D.T. Miller, J.S. Werner, Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. Opt. Express 16, 8126–8143 (2008)

    Article  ADS  Google Scholar 

  26. E.J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt. Express 16, 11083–11094 (2008)

    Article  ADS  Google Scholar 

  27. D.T. Miller, O.P. Kocaoglu, Q. Wang, S. Lee, Adaptive optics and the eye (super resolution OCT). Eye (London, England) 25(3), 321–330 (2011)

    Article  Google Scholar 

  28. M. Pircher, R.J. Zawadzki, Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo. Expert Rev. Ophthalmol. 2(6), 1–25 (2007)

    Article  Google Scholar 

  29. D.X. Hammer, R.D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T.Y.P. Chui, J.D. Akula, A.B. Fulton, Multimodal adaptive optics retinal imager: design and performance. J. Opt. Soc. Am. A 29(12), 2598–2607 (2012)

    Article  ADS  Google Scholar 

  30. J. Yifan R.J. Zawadzki, M.V. Sarunic, Adaptive optics optical coherence tomography for in vivo mouse retinal imaging. J. Biomed. Opt. 18(5), 056007-056007 (2013)

    Google Scholar 

  31. C.E. Campbell, A new method for describing the aberrations of the eye using Zernike polynomials. Opt. Vis. Sci. 80(1), 79–83 (2003)

    Article  Google Scholar 

  32. G. Dai, Wavefront Optics for Vision Correction (SPIE Press, Bellingham, 2008)

    Book  Google Scholar 

  33. J. Porter, A. Guirao, I.G. Cox, D.R. Williams, Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A 18, 1793–1803 (2001)

    Article  ADS  Google Scholar 

  34. L.N. Thibos, X. Hong, A. Bradley, X. Cheng, Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 19, 2329–2348 (2002)

    Article  ADS  Google Scholar 

  35. L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, R. Webb, VISA Standards Taskforce Members, Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 18, S652–S660 (2002)

    Google Scholar 

  36. L. Wang, D.D. Koch, Ocular higher-order aberrations in individuals screened for refractive surgery. J. Cataract Refract. Surg. 29, 1896–1903 (2003)

    Article  Google Scholar 

  37. T.O. Salmon, C. van de Pol, Normal-eye Zernike coefficients and root-mean-square wavefront errors. J. Cataract Refract. Surg. 32, 2064–2074 (2006)

    Article  Google Scholar 

  38. A. Hartwig, D.A. Atchison, IOVS papers in press. Published on October 2, 2012 as Manuscript iovs.12-10610. Analysis of higher order aberrations in a large clinical population. Invest. Ophthalmol. Vis. Sci., 1–19 (2012)

    Google Scholar 

  39. M.T. Sheehan, A.V. Goncharov, V.M. O’Dwyer, V. Toal, C. Dainty, Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field. Opt. Express 15(12), 7367–7380 (2007)

    Article  ADS  Google Scholar 

  40. J. Shen, L.N. Thibos, Peripheral aberrations and image quality for contact lens correction. Opt. Vis. Sci. 88(10), 1196–1205 (2011)

    Article  Google Scholar 

  41. M.J. Collins, C.F. Wildsoet, D.A. Atchison, Monochromatic aberrations and myopia. Vision Res. 35, 1157–1163 (1995)

    Article  Google Scholar 

  42. X. Hong, L. Thibos, Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery. J. Refract. Surg. 16, S647–S650 (2001)

    Google Scholar 

  43. X. Cheng, A. Bradley, X. Hong, L. Thibos, Relationship between refractive error and monochromatic aberrations of the eye. Optom. Vis. Sci. 80, 43–49 (2003)

    Article  Google Scholar 

  44. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, T. Oshika, Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J. Ophthalmol. 137, 988–992 (2004)

    Article  Google Scholar 

  45. H. Cheng, J.K. Barnett, A.S. Vilupuru, J.D. Marsack, S. Kasthurirangan, R.A. Applegate, A. Roorda, A population study on changes in wave aberrations with accommodation. J. Vis. 4, 272–280 (2004)

    Article  Google Scholar 

  46. J. Porter, G. Yoon, S. MacRae, I. Cox, D.R. Williams, Aberrations induced in customized laser refractive surgery due to shifts between natural and dilated pupil center locations. J. Cataract Refract. Surg. 32, 21–32 (2006)

    Article  Google Scholar 

  47. H. Radhakrishnan, W.N. Charman, Age-related changes in ocular aberrations with accommodation. J. Vis. 7, 11–21 (2007)

    Article  Google Scholar 

  48. S. Pantanelli, S. MacRae, T.M. Jeong, G. Yoon, Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high dynamic range wavefront sensor. Ophthalmology 114, 2013–2021 (2007)

    Article  Google Scholar 

  49. A. Denoyer, G. Rabut, C. Baudouin, Tear film aberration dynamics and vision-related quality of life in patients with dry eye disease. Ophthalmology 119, 1811–1818 (2012)

    Article  Google Scholar 

  50. R.W. Everson, Age variation in refractive error distributions. Optom. Weekly 64(9), 31–34 (1973)

    Google Scholar 

  51. H. Hofer, P. Artal, B. Singer, J.L. Aragón, D.R. Williams, Dynamics of the eye’s wave aberration. J. Opt. Soc. Am. A 18, 497–506 (2001)

    Article  ADS  Google Scholar 

  52. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, Benefit of higher closed–loop bandwidths in ocular AO. Opt. Express 11, 2597–2605 (2003)

    Article  ADS  Google Scholar 

  53. D.L. Fried, Anisoplanatism in AO. J. Opt. Soc. Am. 72, 52–61 (1982)

    Article  ADS  Google Scholar 

  54. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, Characteristics of the human isoplanatic patch and implications for AO retinal imaging. J. Biomed. Opt. 13, 024008 (2008)

    Article  ADS  Google Scholar 

  55. H.-L. Liou, N.A. Brennan, Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A 14, 1684–1694 (1997)

    Article  ADS  Google Scholar 

  56. D.A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000)

    Google Scholar 

  57. E.J. Fernández, A. Unterhuber, P.M. Prieto, B. Hermann, W. Drexler, P. Artal, Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt. Express 13, 400–409 (2005)

    Article  ADS  Google Scholar 

  58. D.A. Atchison, G. Smith, Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A 22, 29–37 (2005)

    Article  ADS  Google Scholar 

  59. E.J. Fernández, P. Artal, Ocular aberrations up to the infrared range: from 632.8 to 1070 nm. Opt. Express 16(26), 21199–21208 (2008)

    Article  ADS  Google Scholar 

  60. A.C. van Heel, Correcting the spherical and chromatic aberrations of the eye. J. Opt. Soc. Am. 36, 237–239 (1947)

    Article  Google Scholar 

  61. R.E. Bedford, G. Wyszecki, Axial chromatic aberration of the human eye. J. Opt. Soc. Am. 47, 564–565 (1957)

    Article  Google Scholar 

  62. A.L. Lewis, M. Katz, C. Oehrlein, A modified achromatizing lens. Am. J. Optom. Physiol. Opt. 59, 909–911 (1982)

    Article  Google Scholar 

  63. R. Navarro, J. Santamaria, J. Bescos, Accommodation-dependent model of the human eye with aspherics. J. Opt. Soc. Am. A 2, 1273–1281 (1985)

    Article  ADS  Google Scholar 

  64. I. Powell, Lenses for correcting chromatic aberration of the eye. Appl. Opt. 20, 4152–4155 (1981)

    Article  ADS  Google Scholar 

  65. Y. Benny, S. Manzanera, P.M. Prieto, E.N. Ribak, P. Artal, Wide-angle chromatic aberration corrector for the human eye. J. Opt. Soc. Am. A 24, 1538–1544 (2007)

    Article  ADS  Google Scholar 

  66. B.B. Boycott, J.E. Dowling, Organization of the primate retina: light microscopy. Philos. Trans. R. Soc. Lond. B 255, 109–184 (1969)

    Article  ADS  Google Scholar 

  67. J. Stone, E. Johnston, The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys. J. Comp. Neurol. 196(2), 205–223 (1981)

    Article  Google Scholar 

  68. T.E. Ogden, Nerve fiber layer of the primate retina: morphometric analysis. Invest. Ophthalmol. Vis. Sci. 25(1), 19–29 (1984)

    MathSciNet  Google Scholar 

  69. D.M. Snodderly, R.S. Weinhaus, J.C. Choi, Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J. Neurosci. 12(4), 1169–1193 (1992)

    Google Scholar 

  70. C.A. Curcio, K.R. Sloan, R.E. Kalina, A.E. Hendrickson, Human photoreceptor topography. J. Comp. Neurol. 292(4), 497–523 (1990)

    Article  Google Scholar 

  71. N. Doble, S.S. Choi, J.L. Codona, J. Christou, J.M. Enoch, D.R. Williams, In vivo imaging of the human rod photoreceptor mosaic. Opt. Lett. 36(1), 31–33 (2011)

    Article  ADS  Google Scholar 

  72. J.I.W. Morgan, A. Dubra, R. Wolfe, W.H. Merigan, D.R. Williams, In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009)

    Article  Google Scholar 

  73. D.R. Neal, J. Copland, D. Neal, Shack-Hartmann wavefront sensor precision and accuracy, in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, ed. by A. Duparré, B. Singh. Proc. SPIE, 4779 (2002), pp. 148–160

    Google Scholar 

  74. B.R. Oppenheimer, D.L. Palmer, R.G. Dekany, A. Sivaramakrishnan, M.A. Ealey, T.R. Price, Investigating a Xinetics Inc. deformable mirror. Proc. SPIE 3126, 569–579 (1997)

    Article  ADS  Google Scholar 

  75. R.K. Tyson, Principles of Adaptive Optics, 2nd edn. (Academic, Boston, 1998)

    Google Scholar 

  76. D.T. Miller, L.N. Thibos, X. Hong, Requirements for segmented correctors for diffraction-limited performance in the human eye. Opt. Express 13, 275–289 (2005)

    Article  ADS  Google Scholar 

  77. N. Doble, D.T. Miller, G. Yoon, D.R. Williams, Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes. Appl. Opt. 46, 4501–4514 (2007)

    Article  ADS  Google Scholar 

  78. G.T. Kennedy, C. Paterson, Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors. Opt. Commun. 271, 278–284 (2007)

    Article  ADS  Google Scholar 

  79. T. Farrell, E. Daly, E. Dalimier, C. Dainty, Task-based assessment of deformable mirrors. Proc. SPIE 6467, 64670F (2007)

    Article  ADS  Google Scholar 

  80. R.J. Zawadzki, S.S. Choi, S.M. Jones, S.S. Oliver, J.S. Werner, Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J. Opt. Soc. Am. A 24, 1373–1383 (2007)

    Article  ADS  Google Scholar 

  81. D.C. Chen, S.M. Jones, D.A. Silva, S.S. Olivier, High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. J. Opt. Soc. Am. A 24, 1305–1312 (2007)

    Article  ADS  Google Scholar 

  82. W. Zou, X. Qi, S.A. Burns, Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system. Opt. Lett. 33(22), 2602 (2008)

    Article  ADS  Google Scholar 

  83. B. Cense, E. Koperda, J.M. Brown, O.P. Kocaoglu, W. Gao, R.S. Jonnal, D.T. Miller, Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. Opt. Express 17(5), 4095–4111 (2009)

    Article  ADS  Google Scholar 

  84. C. Li, N. Sredar, K.M. Ivers, H. Queener, J. Porter, A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system. Opt. Express 18(16), 16671–16684 (2010)

    Article  ADS  Google Scholar 

  85. A. Dubra, Y. Sulai, J.L. Norris, R.F. Cooper, A.M. Dubis, D.R. Williams, J. Carroll, Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2(7), 1864–1876 (2011)

    Article  Google Scholar 

  86. S. Bonora, R.J. Zawadzki, G. Naletto, U. Bortolozzo, S. Residori, in Devices and Techniques for Sensorless Adaptive Optics, Adaptive Optics Progress, ed. by R. Tyson (2012), ISBN:978-953-51-0894-8, InTech

    Google Scholar 

  87. H. Hofer, N. Sredar, H. Queener, C. Li, J. Porter, Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt. Express 19(14160–14171), 14160–14171 (2011)

    Article  ADS  Google Scholar 

  88. B. Cense, W. Gao, J.M. Brown, S.M. Jones, R.S. Jonnal, M. Mujat, B.H. Park, J.F. de Boer, D.T. Miller, Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt. Express 17(24), 21634–21651 (2009)

    Article  ADS  Google Scholar 

  89. O.P. Kocaoglu, B. Cense, R.S. Jonnal, Q. Wang, S. Lee, W. Gao, D.T. Miller, Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vis. Res. 51(16), 1835–1844 (2011)

    Article  Google Scholar 

  90. W. Gao, B. Cense, Y. Zhang, R.S. Jonnal, D.T. Miller, Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt. Express 16(9), 6486–6501 (2008)

    Article  ADS  Google Scholar 

  91. K. Sasaki, K. Kurokawa, S. Makita, Y. Yasuno, Extended depth of focus adaptive optics spectral domain optical coherence tomography. Biomed. Opt. Express 3(10), 2353–2370 (2012)

    Article  Google Scholar 

  92. S.G. Adie, B.W. Graf, A. Ahmad, P.S. Carney, S.A. Boppart, Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. U. S. A. 109(19), 7175–7180 (2012)

    Article  ADS  Google Scholar 

  93. E.J. Fernández, W. Drexler, Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography. Opt. Express 13(20), 8184–8197 (2005)

    Article  ADS  Google Scholar 

  94. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P.K. Ahnelt, W. Drexler, Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt. Express 17(22), 19382–19400 (2009)

    Article  ADS  Google Scholar 

  95. R.J. Zawadzki, S.S. Choi, A.R. Fuller, J.W. Evans, B. Hamann, J.S. Werner, Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography. Opt. Express 17(5), 4084–4094 (2009)

    Article  ADS  Google Scholar 

  96. E.J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, W. Drexler, Chromatic aberration correction of the human eye for retinal imaging in the near infrared. Opt. Express 14(13), 6213–6225 (2006)

    Article  ADS  Google Scholar 

  97. J. Qu, R.S. Jonnal, D.T. Miller, Parallel optical coherence tomography using a CCD camera. Chin. Opt. Lett. 2(8), 475–476 (2004)

    ADS  Google Scholar 

  98. L.A. Riggs, J.C. Armington, F. Ratliff, Motions of the retinal image during fixation. J. Opt. Soc. Am. 44(4), 315–321 (1954)

    Article  ADS  Google Scholar 

  99. A.G. Podoleanu, D.A. Jackson, Combined optical coherence tomograph and scanning laser ophthalmoscope. Electron. Lett. 34(11), 1088–1090 (1998)

    Article  Google Scholar 

  100. M. Pircher, E. Gotzinger, C.K. Hitzenberger, Dynamic focus in optical coherence tomography for retinal imaging. J. Biomed. Opt. 11(5), 054013 (2006)

    Article  ADS  Google Scholar 

  101. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, C.K. Hitzenberger, Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. Opt. Express 15(25), 16922–16932 (2007)

    Article  ADS  Google Scholar 

  102. M. Pircher, E. Götzinger, H. Sattmann, R.A. Leitgeb, C.K. Hitzenberger, In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level. Opt. Express 18(13), 13935–13944 (2010)

    Article  ADS  Google Scholar 

  103. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Article  ADS  Google Scholar 

  104. J.F. De Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  105. M.A. Choma, M.V. Sarunic, C. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  106. A.F. Zuluaga, R. Richards-Kortum, Spatially resolved spectral interferometry for determination of subsurface structure. Opt. Lett. 24(8), 519–521 (1999)

    Article  ADS  Google Scholar 

  107. B. Grajciar, M. Pircher, A.F. Fercher, R.A. Leitgeb, Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Opt. Express 13(4), 1131–1137 (2005)

    Article  ADS  Google Scholar 

  108. J.W. Evans, R.J. Zawadzki, S.M. Jones, S.S. Olivier, J.S. Werner, Error budget analysis for an adaptive optics optical coherence tomography system. Opt. Express 17(16), 13768 (2009)

    Article  ADS  Google Scholar 

  109. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Opt. Express 18(8), 8515–8527 (2010)

    Article  ADS  Google Scholar 

  110. S.A. Burns, R. Tumbar, A.E. Elsner, D. Ferguson, D.X. Hammer, Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24(5), 1313–1326 (2007)

    Article  ADS  Google Scholar 

  111. A. Dubra, Y. Sulai, Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2(6), 1757–1768 (2011)

    Article  Google Scholar 

  112. D. Merino, J.L. Duncan, P. Tiruveedhula, A. Roorda, Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2, 2189–2201 (2011)

    Article  Google Scholar 

  113. Z. Liu, O.P. Kocaoglu, R.S. Jonnal, Q. Wang, D.T. Miller, Performance of an off-axis ophthalmic adaptive optics system with toroidal mirror, in Adaptive Optics: Methods, Analysis and Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMA4

    Google Scholar 

  114. S.H. Lee, J.S. Werner, R.J. Zawadzki, Reflective afocal adaptive optics: optical coherence tomography retinal imaging system. Proc. SPIE, 8567, Ophthalmic Technologies XXIII, 856722 (2013)

    Google Scholar 

  115. M. Mujat, R.D. Ferguson, A.H. Patel, N. Iftimia, N. Lue, D.X. Hammer, High resolution multimodal clinical ophthalmic imaging system. Opt. Express 18, 11607–11621 (2010)

    Article  ADS  Google Scholar 

  116. R.J. Zawadzki, S.M. Jones, S. Pilli, S. Balderas-Mata, D.Y. Kim, S.S. Olivier, J.S. Werner, Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed. Opt. Express 2(6), 1674 (2011)

    Article  Google Scholar 

  117. A.G. Capps, R.J. Zawadzki, Q. Yang, D.W. Arathorn, C.R. Vogel, B. Hamann, J.S. Werner, Correction of eye-motion artifacts in AO-OCT data sets, in SPIE BiOS (2011), pp. 78850D–78850D

    Google Scholar 

  118. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22(12), 934–936 (1997)

    Article  ADS  Google Scholar 

  119. J.F. de Boer, T.E. Milner, J.S. Nelson, Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt. Lett. 24(5), 300–302 (1999)

    Article  ADS  Google Scholar 

  120. C.K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9(13), 780–790 (2001)

    Article  ADS  Google Scholar 

  121. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, T. Yatagai, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27(20), 1803–1805 (2002)

    Article  ADS  Google Scholar 

  122. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, Y. Yasuno, Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics. Opt. Express 20, 22796–22812 (2012)

    Article  ADS  Google Scholar 

  123. R.S. Jonnal, O.P. Kocaoglu, Q. Wang, S. Lee, D.T. Miller, Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. Biomed. Opt. Express 3, 104–124 (2012)

    Article  Google Scholar 

  124. O.P. Kocaoglu, S. Lee, R.S. Jonnal, Q. Wang, A.E. Herde, J.C. Derby, W. Gao, D.T. Miller, Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed. Opt. Express 2(4), 748–763 (2011)

    Article  Google Scholar 

  125. O.P. Kocaoglu, R.D. Ferguson, R.S. Jonnal, Z. Liu, Q. Wang, D.X. Hammer, D.T. Miller, Adaptive optics optical coherence tomography with dynamic retinal tracking, Society of Photo-Optical Instrumentation Engineers’ International Symposium on Ophthalmic Technologies XXIII, San Francisco, 2–3 Feb 2013

    Google Scholar 

  126. R.J. Zawadzki, Y. Zhang II, S.M. Jones, S.S. Choi, B. Cense, D. Chen, A.R. Fuller, D.T. Miller, S.S. Olivier, J.S. Werner, Application of adaptive optics: optical coherence tomography for in vivo imaging of microscopic structures in the retina and optic nerve head. Proc. SPIE, 6426, Ophthalmic Technologies XVII, 64261O (2007)

    Google Scholar 

  127. R.H. Steinberg, I. Wood, R.H. Steinberg, Phagocytosis by pigment epithelium of human retinal cones. Nature 252(5481), 305–307 (1974)

    Article  Google Scholar 

  128. D.H. Anderson, S.K. Fisher, Disc shedding in rodlike and conelike photoreceptors of tree squirrels. Science 187(4180), 953–955 (1975)

    Article  ADS  Google Scholar 

  129. R.S. Jonnal, J.R. Besecker, J.C. Derby, O.P. Kocaoglu, B. Cense, W. Gao, Q. Wang, D.T. Miller, Imaging outer segment renewal in living human cone photoreceptors. Opt. Express 18(5), 5257–5270 (2010)

    Article  ADS  Google Scholar 

  130. M. Wojtkowski, B. Kaluzny, R.J. Zawadzki, New directions in ophthalmic optical coherence tomography. Optom. Vis. Sci. 89(5), 524 (2012)

    Article  Google Scholar 

  131. Q. Wang, O.P. Kocaoglu, B. Cense, J. Bruestle, R.S. Jonnal, W. Gao, D.T. Miller, Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011)

    Article  Google Scholar 

  132. Z. Chen, G. Liu, Doppler Optical Coherence Tomography. Handbook of Coherent-Domain Optical Methods (Springer, New York, 2013), p. 889, 1, 889. ISBN 978-1-4614-5175-4

    Google Scholar 

  133. B. Baumann, B. Potsaid, M.F. Kraus, J.J. Liu, D. Huang, J. Hornegger, …, J.G. Fujimoto, Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed. Opt. Express 2(6), 1539–1552 (2011)

    Google Scholar 

  134. D.Y. Kim, J. Fingler, J.S. Werner, D.M. Schwartz, S.E. Fraser, R.J. Zawadzki, In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2(6), 1504 (2011)

    Article  Google Scholar 

  135. L. An, P. Li, T.T. Shen, R. Wang, High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed. Opt. Express 2(10), 2770 (2011)

    Article  Google Scholar 

  136. Y.J. Hong, S. Makita, F. Jaillon, M.J. Ju, E.J. Min, B.H. Lee, …, Y. Yasuno, High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization. Opt. Express 20(3), 2740–2760 (2012)

    Google Scholar 

  137. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J.J. Liu, … D. Huang, Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20(4), 4710–4725 (2012)

    Google Scholar 

  138. B. Braaf, K.A. Vermeer, K.V. Vienola, J.F. de Boer, Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt. Express 20(18), 20516–20534 (2012)

    Article  ADS  Google Scholar 

  139. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, … R.A. Leitgeb, Ultrahigh-speed non-invasive widefield angiography. J. Biomed. Opt. 17(7), 0705051–0705053 (2012)

    Google Scholar 

  140. R.J. Zawadzki, A.T. Ishida, J.S. Werner, Interpretation of the outer retina bands seen on OCT and AO-OCT B-scans, in ISIE/ARVO Annual Conference, Paper: 200. Retinal Imaging I (2012)

    Google Scholar 

  141. A. Kotecha, S. Izadi, G. Jeffery, Age-related changes in the thickness of the human lamina cribrosa. Br. J. Ophthalmol. 90(12), 1531–1534 (2006)

    Article  Google Scholar 

  142. D.Y. Kim, J.S. Werner, R.J. Zawadzki, Complex conjugate artifact-free adaptive optics optical coherence tomography of in vivo human optic nerve head. J. Biomed. Opt. 17(12), 126005–126005 (2012)

    Article  ADS  Google Scholar 

  143. A. Panorgias, R.J. Zawadzki, A.G. Capps, A.A. Hunter, L.S. Morse, J.S. Werner, Multimodal assessment of microscopic retinal morphology and retinal function in patients with geographic atrophy. Investigative Ophthalmology and Visual Science, 54(6), 4372–4384 (2013)

    Google Scholar 

  144. B. Považay, B. Hofer, C. Torti, B. Hermann, A.R. Tumlinson, M. Esmaeelpour, …, W. Drexler, Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt. Express 17(5), 4134–4150 (2009)

    Google Scholar 

  145. S.S. Choi, R.J. Zawadzki, J.L. Keltner, J.S. Werner, Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. Invest. Ophthalmol. Vis. Sci. 49(5), 2103–2119 (2008)

    Article  Google Scholar 

  146. S.S. Choi, R.J. Zawadzki, M.C. Lim, J.D. Brandt, J.L. Keltner, N. Doble, J.S. Werner, Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br. J. Ophthalmol. 95(1), 131–141 (2011)

    Article  Google Scholar 

  147. J.S. Werner, J.L. Keltner, R.J. Zawadzki, S.S. Choi, Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye 25(3), 279–289 (2011)

    Article  Google Scholar 

  148. A. Sommer, N.R. Miller, I. Pollack, A.E. Maumenee, T. George, The nerve fiber layer in the diagnosis of glaucoma. Arch. Ophthalmol. 95, 2149–2156 (1977)

    Article  Google Scholar 

  149. A. Sommer, J. Katz, H.A. Quigley, N.R. Miller, A.L. Robin, R.C. Richter et al., Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch. Ophthalmol. 109, 77–83 (1991)

    Article  Google Scholar 

  150. W.F. Hoyt, L. Frisen, N.M. Newman, Fundoscopy of nerve fiber layer defects in glaucoma. Invest. Ophthalmol. Vis. Sci. 12, 814–829 (1973)

    Google Scholar 

  151. F.A. Medeiros, L.M. Alencar, L.M. Zangwill, C. Bowd, G. Vizzeri, P.A. Sample et al., Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. Invest. Ophthalmol. Vis. Sci. 50, 1675–1681 (2009)

    Article  Google Scholar 

  152. J. Caprioli, H.J. Park, S. Ugurlu, D. Hoffman, Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest. Ophthalmol. Vis. Sci. 39, 2321–2328 (1998)

    Google Scholar 

  153. M. Seong, K.R. Sung, E.H. Choi, S.Y. Kang, J.W. Cho, T.W. Um et al., Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 1446–1452 (2010)

    Article  Google Scholar 

  154. D.X. Hammer, N.V. Iftimia, R.D. Ferguson, C.E. Bigelow, T.E. Ustun, A.M. Barnaby, A.B.. Fulton, Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Zawadzki, R.J., Miller, D.T. (2015). Retinal AO OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_63

Download citation

Publish with us

Policies and ethics