Skip to main content

Optical Microangiography Based on Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Calamante, D.L. Thomas, G.S. Pell, J. Wiersma, R. Turner, Measuring cerebral blood flow using magnetic resonance imaging techniques. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 19(7), 701–735 (1999)

    Article  Google Scholar 

  2. W.D. Heiss, R. Graf, K. Wienhard, J. Löttgen, R. Saito, T. Fujita, G. Rosner, R. Wagner, Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 14(6), 892–902 (1994)

    Article  Google Scholar 

  3. D. Kleinfeld, P.P. Mitra, F. Helmchen, W. Denk, Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U. S. A. 95(26), 15741–15746 (1998)

    Article  ADS  Google Scholar 

  4. A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)

    Article  ADS  Google Scholar 

  5. A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 21(3), 195–201 (2001)

    Article  Google Scholar 

  6. O. Sakurada, C. Kennedy, J. Jehle, J.D. Brown, G.L. Carbin, L. Sokoloff, Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am. J. Physiol. 234(1), H59–H66 (1978)

    Google Scholar 

  7. R. Reif, M.S. Amorosino, K.W. Calabro, O. A’Amar, S.K. Singh, I.J. Bigio, Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures. J. Biomed. Opt. 13(1), 010502 (2008)

    Article  ADS  Google Scholar 

  8. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  9. L. An, P. Li, T.T. Shen, R. Wang, High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed. Opt. Express 2(10), 2770–2783 (2011)

    Article  Google Scholar 

  10. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of fourier domain vs time domain optical coherence tomography. Opt. Express 11(8), 889 (2003)

    Article  ADS  Google Scholar 

  11. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)

    Article  ADS  Google Scholar 

  12. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340 (1997)

    Article  ADS  Google Scholar 

  13. M.E.J. van Velthoven, D.J. Faber, F.D. Verbraak, T.G. van Leeuwen, M.D. de Smet, Recent developments in optical coherence tomography for imaging the retina. Prog. Retin. Eye Res. 26(1), 57–77 (2007)

    Article  Google Scholar 

  14. P. Li, R. Reif, Z. Zhi, E. Martin, T.T. Shen, M. Johnstone, R.K. Wang, Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes. J. Biomed. Opt. 17(7), 076026 (2012)

    Article  ADS  Google Scholar 

  15. C. Li, G. Guan, R. Reif, Z. Huang, R.K. Wang, Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface R. Soc. 9(70), 831–841 (2012)

    Article  Google Scholar 

  16. G. Guan, R. Reif, Z. Huang, R.K. Wang, Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography. J. Biomed. Opt. 16(12), 126003 (2011)

    Article  ADS  Google Scholar 

  17. Z. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22(1), 64–66 (1997)

    Article  ADS  Google Scholar 

  18. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25(2), 114 (2000)

    Article  ADS  Google Scholar 

  19. B.J. Vakoc, S.H. Yun, J.F. de Boer, G.J. Tearney, B.E. Bouma, Phase-resolved optical frequency domain imaging. Opt. Express 13(14), 5483–5493 (2005)

    Article  ADS  Google Scholar 

  20. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, R.K. Wang, Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography. Biomed. Opt. Express 2(3), 579–591 (2011)

    Article  Google Scholar 

  21. V.J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J.G. Fujimoto, D.A. Boas, Quantitative cerebral blood flow with optical coherence tomography. Opt. Express 18(3), 2477 (2010)

    Article  ADS  Google Scholar 

  22. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, M. Wojtkowski, Phase-resolved Doppler optical coherence tomography – limitations and improvements. Opt. Lett. 33(13), 1425 (2008)

    Article  ADS  Google Scholar 

  23. V.X. Yang, M.L. Gordon, A. Mok, Y. Zhao, Z. Chen, R.S. Cobbold, B.C. Wilson, I. Alex Vitkin, Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt. Commun. 208(4–6), 209–214 (2002)

    Article  ADS  Google Scholar 

  24. J. Fingler, R.J. Zawadzki, J.S. Werner, D. Schwartz, S.E. Fraser, Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Opt. Express 17(24), 22190 (2009)

    Article  ADS  Google Scholar 

  25. L. Yu, Z. Chen, Doppler variance imaging for three-dimensional retina and choroid angiography. J. Biomed. Opt. 15(1) (2010)

    Google Scholar 

  26. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25(18), 1358 (2000)

    Article  ADS  Google Scholar 

  27. H. Ren, K.M. Brecke, Z. Ding, Y. Zhao, J.S. Nelson, Z. Chen, Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt. Lett. 27(6), 409 (2002)

    Article  ADS  Google Scholar 

  28. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, Z. Chen, Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Opt. Express 19(12), 11429 (2011)

    Article  ADS  Google Scholar 

  29. M.-T. Tsai, T.-T. Chi, H.-L. Liu, F.-Y. Chang, C.-H. Yang, C.-K. Lee, C.-C. Yang, Microvascular imaging using swept-source optical coherence tomography with single-channel acquisition. Appl. Phys. Express 4(9), 097001 (2011)

    Article  ADS  Google Scholar 

  30. Y. Wang, R. Wang, Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity. Opt. Lett. 35(21), 3538 (2010)

    Article  ADS  Google Scholar 

  31. J. Enfield, E. Jonathan, M. Leahy, In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed. Opt. Express 2(5), 1184–1193 (2011)

    Article  Google Scholar 

  32. E. Jonathan, J. Enfield, M.J. Leahy, Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J. Biophotonics 4(9), 583–587 (2011)

    Google Scholar 

  33. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J.J. Liu, M.F. Kraus, H. Subhash, J.G. Fujimoto, J. Hornegger, D. Huang, Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20(4), 4710 (2012)

    Article  ADS  Google Scholar 

  34. G. Liu, A.J. Lin, B.J. Tromberg, Z. Chen, A comparison of Doppler optical coherence tomography methods. Biomed. Opt. Express 3(10), 2669 (2012)

    Article  Google Scholar 

  35. J.K. Barton, S. Stromski, Flow measurement without phase information in optical coherence tomography images. Opt. Express 13(14), 5234 (2005)

    Article  ADS  Google Scholar 

  36. A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33(13), 1530 (2008)

    Article  ADS  Google Scholar 

  37. R.K. Wang, S.L. Jacques, Z. Ma, S. Hurst, S.R. Hanson, A. Gruber, Three dimensional optical angiography. Opt. Express 15(7), 4083 (2007)

    Article  ADS  Google Scholar 

  38. R.K. Wang, L. An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express 17(11), 8926–8940 (2009)

    Article  ADS  Google Scholar 

  39. R.K. Wang, In vivo full range complex Fourier domain optical coherence tomography. Appl. Phys. Lett. 90(5), 054103 (2007)

    Article  ADS  Google Scholar 

  40. R.K. Wang, Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning. Phys. Med. Biol. 52(19), 5897–5907 (2007)

    Article  Google Scholar 

  41. L. An, T.T. Shen, R.K. Wang, Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. J. Biomed. Opt. 16(10), 106013 (2011)

    Article  ADS  Google Scholar 

  42. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt. Express 16(9), 6008 (2008)

    Article  ADS  Google Scholar 

  43. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography. Opt. Express 17(16), 14281 (2009)

    Article  ADS  Google Scholar 

  44. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30(10), 1162–1164 (2005)

    Article  ADS  Google Scholar 

  45. B. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. Opt. Express 13(11), 3931–3944 (2005)

    Article  ADS  Google Scholar 

  46. S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. Opt. Express 13(2), 410–416 (2005)

    Article  ADS  Google Scholar 

  47. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14(17), 7821–7840 (2006)

    Article  ADS  Google Scholar 

  48. B.J. Vakoc, G.J. Tearney, B.E. Bouma, Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography. IEEE Trans. Med. Imaging 28(6), 814–821 (2009)

    Article  Google Scholar 

  49. J. Lee, V. Srinivasan, H. Radhakrishnan, D.A. Boas, Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex. Opt. Express 19(22), 21258–21270 (2011)

    Article  ADS  Google Scholar 

  50. Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective… – Abstract – UK PubMed Central [Online]. Available: http://ukpmc.ac.uk/abstract/MED/1891225. Accessed 25 Sept 2012

  51. S. Dziennis, R. Reif, Z. Zhi, A.L. Nuttall, R.K. Wang, Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography. J. Biomed. Opt. 17(10), 106003 (2012)

    Article  ADS  Google Scholar 

  52. H.M. Subhash, V. Davila, H. Sun, A.T. Nguyen-Huynh, X. Shi, A.L. Nuttall, R.K. Wang, Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography. IEEE Trans. Med. Imaging 30(2), 224–230 (2011)

    Article  Google Scholar 

  53. H.M. Subhash, V. Davila, H. Sun, A.T. Nguyen-Huynh, A.L. Nuttall, R.K. Wang, Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography. J. Biomed. Opt. 15(3), 036024 (2010)

    Article  ADS  Google Scholar 

  54. N. Choudhury, F. Chen, X. Shi, A.L. Nuttall, R.K. Wang, Volumetric imaging of blood flow within cochlea in gerbil in vivo. IEEE J. Sel. Top. Quantum Electron. 16(3), 524–529 (2010)

    Article  Google Scholar 

  55. G. Liew, P. Mitchell, E. Rochtchina, T.Y. Wong, W. Hsu, M.L. Lee, A. Wainwright, J.J. Wang, Fractal analysis of retinal microvasculature and coronary heart disease mortality. Eur. Heart J. 32(4), 422–429 (2011)

    Article  Google Scholar 

  56. N. Cheung, G. Liew, R.I. Lindley, E.Y. Liu, J.J. Wang, P. Hand, M. Baker, P. Mitchell, T.Y. Wong, Retinal fractals and acute lacunar stroke. Ann. Neurol. 68(1), 107–111 (2010)

    Article  Google Scholar 

  57. Y. Zhou, K.G. Sheets, E.J. Knott, C.E. Regan, J. Tuo, C.-C. Chan, W.C. Gordon, N.G. Bazan, Cellular and 3D optical coherence tomography assessment during the initiation and progression of retinal degeneration in the Ccl2/Cx3cr1-deficient mouse. Exp. Eye Res. 93(5), 636–648 (2011)

    Article  Google Scholar 

  58. D. Goldenberg, U. Soiberman, A. Loewenstein, M. Goldstein, Heidelberg spectral-domain optical coherence tomography findings in retinal artery macroaneurysm. Retina 32, 990–995 (2011)

    Article  Google Scholar 

  59. J.W. Baish, T. Stylianopoulos, R.M. Lanning, W.S. Kamoun, D. Fukumura, L.L. Munn, R.K. Jain, Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. U. S. A. 108(5), 1799–1803 (2011)

    Article  ADS  Google Scholar 

  60. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, R.K. Wang, Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int. J. Biomed. Imaging 509783, 11 (2012)

    Google Scholar 

  61. L. Conroy, R.S. DaCosta, I.A. Vitkin, Quantifying tissue microvasculature with speckle variance optical coherence tomography. Opt. Lett. 37(15), 3180 (2012)

    Article  ADS  Google Scholar 

  62. T. Liu, Q. Wei, J. Wang, S. Jiao, H.F. Zhang, Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed. Opt. Express 2(5), 1359–1365 (2011)

    Article  Google Scholar 

  63. J. Qin, R. Reif, Z. Zhi, S. Dziennis, R. Wang, Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system. Biomed. Opt. Express 3(3), 455–466 (2012)

    Article  Google Scholar 

  64. P. Li, L. An, R. Reif, T.T. Shen, M. Johnstone, R.K. Wang, In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography. Biomed. Opt. Express 2(11), 3109–3118 (2011)

    Article  Google Scholar 

  65. J. Qin, J. Jiang, L. An, D. Gareau, R.K. Wang, In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography. Lasers Surg. Med. 43(2), 122–129 (2011)

    Article  Google Scholar 

  66. R. Reif, R.K. Wang, Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography. Quant. Imaging Med. Surg. 2(3), 207–212 (2012)

    Google Scholar 

Download references

Acknowledgements

Some of the results presented in this chapter were made possible with research grants awarded by the National Institutes of Health (R01HL093140, R01HL093140S, R01EB009682, and R01DC01201), the American Heart Association (0855733G), and the W.H. Coulter Foundation Translational Research Partnership Program. Dr Wang is a recipient of Research to Prevent Blindness Innovative Research Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of grant-giving bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruikang K. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Reif, R., Wang, R.K. (2015). Optical Microangiography Based on Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_45

Download citation

Publish with us

Policies and ethics