Skip to main content

How Does High Temperature Affect Legume Nodule Symbiotic Activity?

  • Chapter
Legume Nitrogen Fixation in a Changing Environment

Abstract

According to global climate model predictions, environmental conditions such as temperature are going to be altered. Plants will be facing high-temperature conditions that affect their development. Within this context, it is crucial to identify the target processes that influence N2 fixation and crop production under elevated temperature conditions. As it is described in this book chapter, while N2 fixation has been well characterized under other adverse environmental conditions (drought, salinity, elevated CO2 concentration, etc.), very little is known about the effect of heat stress on nodule functioning. While there are a few reports about high-temperature effect on nodule carbohydrate and amino acid contents, there is not any study analyzing oxidative stress in those nodules. Regulation of these three factors is essential for optimized N2 fixation; thus, this is a topic that should be studied in more detail. Available information confirms that high temperature strongly affects N2 fixation and plant growth, especially when plants are exposed to temperature higher than 25 °C. High temperature decreased the growth of plants due to its negative effects not only on plants’ photosynthetic performance, but also on nodule growth and development which result in decreased nodule biomass and depletion of nodule total soluble protein content. It is also remarkable that N2 fixation has been showed to be more sensitive to high temperature than photosynthesis. In this chapter, we highlight the variability in performance of various bacterial strains and plant species under high-temperature environments, and discuss about the importance of the identification of target plants and rhizobium cultivars to form optimal symbiotic combinations that will be better adapted to predicted climate change conditions. This in turn will enable higher N2 fixation efficiency and consequently plant growth under adverse environmental conditions, including high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annicchiarico G, Ceternolo G, Rossi E, Martiniello P (2011) Effect of manure vs. fertilizer inputs on productivity of forage crop models. Int J Environ Res Public Health 8:1893–1913

    PubMed Central  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    CAS  Google Scholar 

  • Aranjuelo I, Zita G, Hernandez L, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2005) Response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic downregulation. Physiol Plant 123:348–358

    CAS  Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M (2007) Effect of elevated temperature and water availability on CO2 exchange and nitrogen fixation of nodulated alfalfa plants. Environ Exp Bot 59:99–108

    CAS  Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M, Nogués S (2008) Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Funct Plant Biol 35:306–317

    CAS  Google Scholar 

  • Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aranjuelo I, Tcherkez G, Molero G, Gilard F, Avice JC, Nogués S (2013) Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction. J Exp Bot 64(4):885–897

    PubMed  Google Scholar 

  • Aranjuelo I, Arrese-Igor C, Molero G (2014) Nodule performance within a changing environmental context. J Plant Physiol 98:32–39

    Google Scholar 

  • Arrese-Igor C, González EM, Gordon AJ, Minchin FR, Gálvez L, Royuela M, Cabrerizo PM, Aparicio-Tejo PM (1999) Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis 27:189–212

    CAS  Google Scholar 

  • Barrios S, Raggio N, Raggio M (1963) Effect of temperature on infection of isolated bean roots by rhizobia. Plant Physiol 38:171–174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bélanger G, Castonguay Y, Bertrand A, Dhont C, Rochette P, Couture L et al (2005) Winter damage to perennial forage crops in eastern Canada: causes, mitigation, and prediction. Can J Plant Sci 86:33–47

    Google Scholar 

  • Bertrand A, Prévost D, Bigras FJ, Castonguay Y (2007) Elevated atmospheric CO2 and strain of Rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Ann Bot 99:275–284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2014) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ. doi: 10.1111/pce.12443

  • Bohlool BB, Schmidt EL (1973) Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci Soc Am Proc 37:561–564

    Google Scholar 

  • Boonkerd N, Weber DF, Bezdicek DF (1978) Influence of Rhizobium japonicum strains and inoculation methods on soybeans grown in rhizobia-populated soil. Agron J 70:547–549

    Google Scholar 

  • Burity HA, Faris MA, Culman BE (1989) Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 114:249–255

    Google Scholar 

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across. Eur Agric Forest Meteorol 108:101–112

    Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate change and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric Forest Meteorol 121:69–78

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    CAS  PubMed  Google Scholar 

  • Dart PJ (1974) Development of root-nodule: the infection process. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 382–398

    Google Scholar 

  • Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  PubMed  Google Scholar 

  • Dennt MD (1984) The tropical environmental. The physiology of tropical field crops. Wiley, New York, NY, pp 1–38

    Google Scholar 

  • Drake BG, González-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    CAS  PubMed  Google Scholar 

  • Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting re-growth cycle. Physiol Plant 126:458–468

    CAS  Google Scholar 

  • Erice G, Irigoyen JJ, Sánchez-Díaz M, Avice JC, Ourry A (2007) Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci 172:903–912

    CAS  Google Scholar 

  • FAO (1996) FAO Irrigation and drainage paper 55. Available online at ftp://ftp.fao.org/agl/aglw/docs/idp55e.pdf

  • FAOSTAT (2002) FAO Statistical Databases. Available online at http://apps.fao.org/. Accessed January 2002

  • Fellers U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco. Plant Physiol 116:539–546

    Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Mullineaux PM (ed) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp 1–42

    Google Scholar 

  • Franco AA, Vincent JM (1976) Competition among rhizobial strains for the colonization and nodulation of two tropical legumes. Plant Soil 45:27–48

    Google Scholar 

  • Frings JFJ (1976) The Rhizobium-pea symbiosis as affected by high temperatures. Thesis, Medelingen Landbouwogeschool, Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Galmés J, Aranjuelo I, Medrano H, Flexas H (2013) Variation in Rubisco content and activity under variable climatic factors. Photo Res 117:73–90

    Google Scholar 

  • Gálvez L, Hirsch AM, Wycoff KL, Hunt S, Layzell DB, Kondorosi A, Crespi M (2000) Oxygen regulation of a nodule-located carbonic anhydrase in alfalfa. Plant Physiol 124:1059–1068

    PubMed Central  PubMed  Google Scholar 

  • Gálvez L, González EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    PubMed  Google Scholar 

  • Gatanaris GA, Papavassiliou AG, Rubock P, Silverstein SJ, Gottesman ME (1990) Renaturation of denatured lambda repressor requires heat shock proteins. Cell 61:1013–1020

    Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GE (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose biphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    CAS  PubMed  Google Scholar 

  • Gonnet S, Díaz P (2000) Glutamine synthetase and glutamate synthase activities in relation to nitrogen fixation in Lotus spp. Rev Bras Fisiol Veg 12:195–202

    CAS  Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120(3):867–878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gottesman S, Gottesman ME, Shaw JE, Pearson ML (1981) Protein degradation in E. coli: the Ion mutation and bacteriophage lambda N and cII protein stability. Cell 24:225–233

    CAS  PubMed  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    CAS  PubMed  Google Scholar 

  • Hafeez FY, Asad S, Malik KA (1991) The effects of high-temperature on Vigna radiata nodulation and growth with different bradyrhizobial strains. Environ Exp Bot 31:285–294

    Google Scholar 

  • Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? Plant Physiol Biochem 40:619–624

    Google Scholar 

  • Hernandez-Armenta R, Wien HC, Eaglesham ARJ (1989a) Carbohydrate partitioning and nodule function in common bean after heat stress. Crop Sci 29:1292–1297

    Google Scholar 

  • Hernandez-Armenta R, Wien HC, Eaglesham ARJ (1989b) Maximum temperature for nitrogen fixation in common bean. Crop Sci 29:1260–1265

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Hopkins WG, Hüner NPA (2004) Introduction to plant physiology, 3rd edn. John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Hungria M, Franco AA (1993) Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. Plant Soil 149:95–102

    CAS  Google Scholar 

  • Hungria M, Franco AA, Sprent JI (1993) New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris. Plant Soil 149:103–109

    Google Scholar 

  • Hungria M (1995) Efeito das temperaturas elevadas na exsudaçäo de indutores dos genes nod pelo feijoeiro e soja. In: Hungria M, Balota EL, Colozzi-Filho A, Andrade D (eds) Microbiologia do solo: desafìos para o século XXI. IAPAR/EMBRAPA-CNPSo, Londrina, pp 368–373

    Google Scholar 

  • Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819–830

    CAS  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Mejías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    CAS  Google Scholar 

  • Hungria M, Kaschuk G (2014) Regulation of N2 fixation and NO3 /NH4 + assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39

    CAS  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    CAS  Google Scholar 

  • IPCC (2013) Intergovernmental panel on climate change. Climate change 2013: the physical science basis. In: Collins M, Knutti R (eds) Contribution of IPCC Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2010) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol 12:60–69

    Google Scholar 

  • Kaschuk G, Yind X, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2012) Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environ Exp Bot 76:1–6

    CAS  Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, Gonzalez EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larrainzar E, Wienkoop S, Scherling C, Kempa S, Ladrera R, Arrese-Igor C et al (2009) Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol Plant Microbe Interact 22:1565–1576

    CAS  PubMed  Google Scholar 

  • Lie TA (1974) Environmental effects on nodulation and symbiotic nitrogen fixation. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 555–582

    Google Scholar 

  • Lie TA (1981) Environmental physiology of the legume-Rhizobium symbiosis. In: Broughton WJ (ed) Nitrogen fixation, vol 1. Clarendon, Oxford, pp 104–134

    Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    CAS  PubMed  Google Scholar 

  • Liu JG, You LZ, Amini M, Obersteiner M, Herrero M, Zehnder AJB, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci U S A 107:8035–8040

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lluch C, Carrero JJ, Tejera N, Ocaña A (2002) Interacción planta-microorganismo del suelo: simbiosis Fijadoras de Nitrógeno. In: Reigosa JM, Pedrol N, Sánchez A (eds) Ecofisiología vegetal. Paraninfo, Madrid, pp 331–360

    Google Scholar 

  • Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena spp. trees. Int J Syst Bacteriol 41:417–426

    CAS  PubMed  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Google Scholar 

  • Michelis J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. App Environ Microbiol 60(4):1206

    Google Scholar 

  • Montañez A, Danso SLA, Hardarson G (1995) The effect of temperature on nodulation and nitrogen fixation by five Bradyrhizobium japonicum strains. Appl Soil Ecol 2:165–174

    Google Scholar 

  • Moore BE, Cheng SH, Sims D, Seemann JR (1999) The biochemical and molecular basis for acclimation to elevated CO2. Plant Cell Environ 22:567–582

    CAS  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR et al (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Neves MCP, Hungria M (1987) The physiology of nitrogen fixation in tropical grain legumes. Curr Rev Plant Sci 6:267–321

    CAS  Google Scholar 

  • Oury F, Godin C, Mailliard A, Chassin A, Gardet O, Giraud A, Heumez E, Morlais J, Rolland B, Rousset M, Trottet M, Charmet G (2012) A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. Europ J Agron 40:28–38

    Google Scholar 

  • Pack KH, Walker GC (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–290

    Google Scholar 

  • Parsons R, Sunley RJ (2001) Nitrogen nutrition and the role of root-shoot nitrogen signaling particularly in symbiotic systems. J Exp Bot 52:435–443

    CAS  PubMed  Google Scholar 

  • Pankhurst CE, Gibson AH (1973) Rhizobium strain influence on disruption of clover nodule development at high temperature. J Gen Microbiol 74:219–231

    CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28

    CAS  Google Scholar 

  • Piha ML, Munns DN (1987) Nitrogen fixation capacity of field grown bean compared to other grain legumes. Agron J 79:690–696

    Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione pathway in chloroplasts by metabolic modeling: computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    CAS  Google Scholar 

  • Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168

    CAS  PubMed  Google Scholar 

  • Prevost D, Drouin P, Hantoun H (1999) The potential use of cold-adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R et al (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin

    Google Scholar 

  • Qureshi MI, Muneer S, Bashir H, Ahmad J, Iqbal MI (2010) Nodule physiology and proteomics of stressed legumes. Adv Bot Res 35:1–47

    Google Scholar 

  • Ratcliff WC, Kadam SV, Denison RF (2008) Polyhydroxybutyrate supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65(3):91–399

    Google Scholar 

  • Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP (2006) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ 29:1651–1658

    CAS  PubMed  Google Scholar 

  • Roughley RJ, Blowes WM, Herridge DF (1976) Nodulation of Trifolium subterraneum by introduced rhizobia in competition with naturalized strains. Soil Biol Biochem 8:403–407

    Google Scholar 

  • Russell PE, Jones DG (1975) Variation in the selection of Rhizobium trifolii by varieties of red and white clover. Soil Biol Biochem 7:15–18

    Google Scholar 

  • Sakakibara Y (1988) The dnaK gene of Escherichia coli functions in initiation of chromosome replication. J Bacteriol 170:972–979

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanz-Sáez A, Erice G, Aguirreolea J, Irigoyen JJ, Sánchez-Díaz M (2012) Alfalfa yield under elevated CO2 and temperature depends on the Sinorhizobium strain and growth season. Environ Experiment Bot 77:267–273

    Google Scholar 

  • Salvucci ME, van de Loo FJ, Stecher DS (2003) Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216:736–744

    CAS  PubMed  Google Scholar 

  • Serraj R, Adu-Gyamfi J (2004) Role of symbiotic nitrogen fixation in the improvement of legume productivity under stressed environments. West Afr J Appl Ecol 6:95–109

    Google Scholar 

  • Serraj R, Sinclair TR, Allen LH (1998) Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell Environ 21:491–500

    Google Scholar 

  • Serraj R, Purcell LC, Sinclair TR (1999) Inhibition of N2 fixation by drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Google Scholar 

  • Simões-Araújo JL, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M (2008) VuNIP1 (NOD26-like) and VuHSP17.7 gene expression are regulated in response to heat stress in cowpea nodule. Environ Exp Bot 63:256–265

    Google Scholar 

  • Silvente S, Camas A, Lara M (2003) Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot 54:749–755

    CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J, Tran LS (2014) N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J Plant Physiol 171:407–410

    CAS  PubMed  Google Scholar 

  • Taylor WE, Straus DE, Grossman AD, Burton ZF, Gross CA, Burges R (1984) Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell 38:371–381

    CAS  PubMed  Google Scholar 

  • Thompson RB, Martínez-Gaitan C, Gallardo M, Giménez C, Fernández MD (2007) Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agri Water Manag 89:261–274

    Google Scholar 

  • Thumfort PP, Layzell DB, Atkins CA (1999) Diffusion and reaction of oxygen in the central tissue of ureide-producing legume nodules. Plant Cell Environ 22:1351–1365

    Google Scholar 

  • United Nations (2013) United Nations, Department of Economics and Social Affairs, Population Division. http://esa.un.org/wpp/documentation/pdf/wpp2012_press_release.pdf

  • USGS (2013) United States Geological Survey, circular 1139. Available online at http://pubs.usgs.gov/circ/circ1139/pdf/part2.pdf

  • VanBogelen RA, Vaughn V, Neidhardt FC (1983) Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol 153:1066–1068

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol 42:373–392

    CAS  Google Scholar 

  • Vance CP, Lamb JFS (2001) Application of biochemical studies to improving nitrogen fixation. Aust J Exp Agric 41:403–416

    CAS  Google Scholar 

  • Van der Maesen LJG, Somaatmadja S (1989) Plant resources of South-East Asia. PUDOC/PROSEA, Wageningen, pp 60–63

    Google Scholar 

  • Van Rhijn P, Vanderleyden J (1995) The Rhizobium-legume symbiosis. Microbiol Rev 59:124–142

    PubMed Central  PubMed  Google Scholar 

  • Vincent JM (1980) Factors controlling the legume-Rhizobium symbiosis. In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation. Vol. II. Symbiotic associations and cyanobacteria. University Park Press, Baltimore, MD, pp 103–129

    Google Scholar 

  • Wada M, Itikawa H (1984) Participation of Escherichia coli K-12 groE gene products in the synthesis of cellular DNA and RNA. J Bacteriol 157:694–696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113(11):1607–1614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish National Research and Development Programme (AGL2011-30386-CO2-1 and AGL2011-30386-CO2-2). Iker Aranjuelo was the recipient of a Ramón y Cajal research grant (Ministerio de Economía y Competitividad). Álvaro Sanz-Saez was the recipient of a Basque Country Postdoctoral Fellowship (Departamento de Educación, Política Lingüistica y Cultura del Gobierno Vasco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Aranjuelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aranjuelo, I., Aldasoro, J., Arrese-Igor, C., Erice, G., Sanz-Sáez, Á. (2015). How Does High Temperature Affect Legume Nodule Symbiotic Activity?. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-06212-9_4

Download citation

Publish with us

Policies and ethics