Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

We present an in-depth analysis and benchmark of shape deformation techniques for their use in simulation-based design optimization scenarios. We first introduce classical free-form deformation, its direct manipulation variant, as well as deformations based on radial basis functions. We compare the techniques in a series of representative synthetic benchmarks, including computational performance, numerical robustness, quality of the deformation, adaptive refinement, as well as precision of constraint satisfaction. As an application-oriented benchmark we investigate the ability to adapt an existing volumetric simulation mesh according to an updated surface geometry, including unstructured tetrahedral, structured hexahedral, and arbitrary polyhedral example meshes. Finally, we provide a detailed assessment of the methods and give concrete advice on choosing a suitable technique for a given optimization scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechmann, D.: Space deformation models survey. Comput. Graph. 18(4), 571–586 (1994)

    Article  Google Scholar 

  2. de Boer, A., van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85, 784–795 (2007)

    Article  Google Scholar 

  3. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput. Graph. Forum (Proc. Eurograph.) 24(3), 611–621 (2005)

    Google Scholar 

  4. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  5. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters, Natick (2010)

    Google Scholar 

  6. Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. In: Proceedings of ACM SIGGRAPH, pp. 187–196 (1990)

    Google Scholar 

  7. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing, Singapore (2007)

    Book  MATH  Google Scholar 

  8. Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27, 107:1–107:21 (2008)

    Google Scholar 

  9. Giannelli, C., Jüttler, B., Speleers, H.: THB–splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

    Article  MATH  Google Scholar 

  10. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  11. Griessmair, J., Purgathofer, W.: Deformation of solids with trivariate B-splines. In: Proceedings of Eurographics (1989)

    Google Scholar 

  12. Heft, A.I., Indinger, T., Adams, N.A.: Introduction of a new realistic generic car model for aerodynamic investigations. In: SAE 2012 World Congress (2012)

    Google Scholar 

  13. Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In: Proceedings of ACM SIGGRAPH, pp. 177–184 (1992)

    Google Scholar 

  14. Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 78:1–78:8 (2011)

    Google Scholar 

  15. Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput. Fluids 36(6), 1119–1136 (2007)

    Article  MATH  Google Scholar 

  16. Lamousin, H., Waggenspack, N.: NURBS-based free-form deformations. IEEE Comput. Graph. Appl. 14(6), 59–65 (1994)

    Article  Google Scholar 

  17. MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proceedings of ACM SIGGRAPH, pp. 181–188 (1996)

    Google Scholar 

  18. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Meth. Fluids 70, 646–670 (2011)

    Article  MathSciNet  Google Scholar 

  19. Menzel, S., Sendhoff, B.: Representing the change-free form deformation for evolutionary design optimization. Stud. Comput. Intell. 88, 63–86 (2008)

    Article  Google Scholar 

  20. Menzel, S., Olhofer, M., Sendhoff, B.: Application of free form deformation techniques in evolutionary design optimisation. In: Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization (2005)

    Google Scholar 

  21. Menzel, S., Olhofer, M., Sendhoff, B.: Direct manipulation of free form deformation in evolutionary design optimisation. In: International Conference on Parallel Problem Solving from Nature (PPSN), pp. 352–361 (2006)

    Google Scholar 

  22. Michler, A.K.: Aircraft control surface deflection using RBF-based mesh deformation. Int. J. Numer. Meth. Eng. 88(10), 986–1007 (2011)

    Article  MATH  Google Scholar 

  23. Moccozet, L., Thalmann, N.: Dirichlet free-form deformations and their application to hand simulation. In: Computer Animation ’97, pp. 93–102 (1997)

    Google Scholar 

  24. OpenFOAM: Open source field operation and manipulation C++ libraries. http://www.openfoam.org (2012)

  25. OpenMP Architecture Review Board: OpenMP application program interface version 3.1. URL http://www.openmp.org/mp-documents/OpenMP3.1.pdf (2011)

  26. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  27. Samareh, J.A.: A survey of shape parameterization techniques. Technical Report NASA/CP-1999-209136/PT1, NASA Langley Research Center (1999)

    Google Scholar 

  28. Samareh, J.A.: Aerodynamic shape optimization based on free-form deformation. In: Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004)

    Google Scholar 

  29. Sapidis, N.S.: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  MATH  Google Scholar 

  30. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of ACM SIGGRAPH, pp. 151–159 (1986)

    Google Scholar 

  32. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  33. Sibson, R.: A vector identity for the dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87, 151–155 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sieger, D., Menzel, S., Botsch, M.: A comprehensive comparison of shape deformations in evolutionary design optimization. In: Proceedings of the 3rd International Conference on Engineering Optimization (2012)

    Google Scholar 

  35. Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using triharmonic radial basis functions. In: Proceedings of the 21st International Meshing Roundtable (2012)

    Google Scholar 

  36. Sieger, D., Menzel, S., Botsch, M.: RBF morphing techniques for simulation-based design optimization. Eng. Comput. 30(2), 161–174 (2014)

    Article  Google Scholar 

  37. Song, W., Yang, X.: Free-form deformation with weighted T-spline. Vis. Comput. 21, 139–151 (2005)

    Article  MathSciNet  Google Scholar 

  38. Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing methods for 3D shape optimization. In: Proceedings of the 20th International Meshing Roundtable, pp. 293–311 (2011)

    Google Scholar 

  39. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

Daniel Sieger gratefully acknowledges the financial support from Honda Research Institute Europe (HRI-EU). Mario Botsch is supported by the German National Research Foundation (DFG CoE 277: CITEC). The authors kindly thank Matthew Staten from Sandia National Laboratories for originally providing us with Pipe models from [38].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sieger, D., Menzel, S., Botsch, M. (2015). On Shape Deformation Techniques for Simulation-Based Design Optimization. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_14

Download citation

Publish with us

Policies and ethics