Skip to main content

Antioxidant is a Key Factor in Mussel Protein Adhesion

  • Chapter
  • First Online:
Adhesive Interactions of Mussel Foot Proteins

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The underwater adhesion of marine mussels relies on mussel foot proteins (Mfps) rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (Dopa). As a side chain, dopa is capable of strong bidentate interactions with a variety of surfaces, but its susceptibility to oxidation often renders it unreliable for adhesion. Mussels limit Dopa oxidation by imposing an acidic, reducing regime in the confined space of Mfp deposition. Using the surface forces apparatus (SFA) technique, I demonstrate that the adhesion of Mfp-3 to mica is closely coupled with Dopa redox and pH. Raising the pH from 3 to 7.5 decreases the adhesion energy of Mfp-3 on mica 20-fold and appears to be driven by the pH-dependent oxidation of Dopa. Addition of thiol-rich Mfp-6 restores Mfp-3 adhesion by coupling the oxidation of thiols to the reduction of Dopaquinones. How mussels preserve adhesive Dopa-containing proteins from oxidation has considerable biological and technological value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao H, Waite JH (2006) J Biol Chem 281(36):26150–26158

    Article  CAS  Google Scholar 

  2. Zhao H et al (2006) J Biol Chem 281(16):11090–11096

    Article  CAS  Google Scholar 

  3. Lee H, Scherer NF, Messersmith PB (2006) Proc Natl Acad Sci U S A 103(35):12999–13003

    Article  CAS  Google Scholar 

  4. Lee H, Lee BP, Messersmith PB (2007) Nature 448(7151):338–341

    Article  CAS  Google Scholar 

  5. Glass P et al (2009) Langmuir 25(12):6607–6612

    Article  CAS  Google Scholar 

  6. Zhou WH et al (2010) J Mater Chem 20(5):880–883

    Article  CAS  Google Scholar 

  7. Brubaker CE et al (2010) Biomaterials 31(3):420–427

    Article  CAS  Google Scholar 

  8. Li SC et al (2010) Science 328(5980):882–884

    Article  CAS  Google Scholar 

  9. Yamamoto H (1987) J Chem Soc Perkin Trans 1(3):613–618

    Article  Google Scholar 

  10. Yu ME, Deming TJ (1998) Macromolecules 31(15):4739–4745

    Article  CAS  Google Scholar 

  11. Ninan L et al (2007) Acta Biomater 3(5):687–694

    Article  CAS  Google Scholar 

  12. Cha HJ et al (2009) Biofouling 25(2):99–107

    Article  CAS  Google Scholar 

  13. Wang JJ et al (2008) Adv Mater 20(20):3872

    Article  CAS  Google Scholar 

  14. Lin Q et al (2007) Proc Natl Acad Sci U S A 104(10):3782–3786

    Article  CAS  Google Scholar 

  15. Hwang DS et al (2010) J Biol Chem 285(33):25850–25858

    Article  CAS  Google Scholar 

  16. Tamarin A, Lewis P, Askey J (1976) J Morphol 149(2):199–221

    Article  CAS  Google Scholar 

  17. Sagert J, Waite JH (2009) J Exp Biol 212(14):2224–2236

    Article  CAS  Google Scholar 

  18. Freund J, Kalbitzer HR (1995) J Biomol NMR 5(3):321–322

    CAS  Google Scholar 

  19. Proudfoot GM, Ritchie IM (1983) Aust J Chem 36(5):885–894

    Article  CAS  Google Scholar 

  20. Haemers S et al (2002) Langmuir 18(12):4903–4907

    Article  CAS  Google Scholar 

  21. Rzepecki LM, Waite JH (1991) Arch Biochem Biophys 285(1):27–36

    Article  CAS  Google Scholar 

  22. Liu B, Burdine L, Kodadek T (2006) J Am Chem Soc 128(47):15228–15235

    Article  CAS  Google Scholar 

  23. Rzepecki LM, Nagafuchi T, Waite JH (1991) Arch Biochem Biophys 285(1):17–26

    Article  CAS  Google Scholar 

  24. Michibata H et al (2003) Coord Chem Rev 237(1–2):41–51

    Article  CAS  Google Scholar 

  25. Jensen KS, Hansen RE, Winther JR (2009) Antioxid Redox Signal 11(5):1047–1058

    Article  CAS  Google Scholar 

  26. Brandes N, Schmitt S, Jakob U (2009) Antioxid Redox Signal 11(5):997–1014

    Article  CAS  Google Scholar 

  27. Anderson TH et al (2010) Adv Funct Mater 20(23):4196–4205

    Article  CAS  Google Scholar 

  28. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, Burlington, MA

    Google Scholar 

  29. Inaba K (2010) Genes Cells 15(9):935–943

    Article  CAS  Google Scholar 

  30. McDowell LM et al (1999) J Biol Chem 274(29):20293–20295

    Article  CAS  Google Scholar 

  31. Zeng HB et al (2010) Proc Natl Acad Sci U S A 107(29):12850–12853

    Article  CAS  Google Scholar 

  32. Depuydt M et al (2009) Science 326(5956):1109–1111

    Article  CAS  Google Scholar 

  33. Ottaviano FG, Handy DE, Loscalzo J (2008) Circ J 72(1):1–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, J. (2014). Antioxidant is a Key Factor in Mussel Protein Adhesion. In: Adhesive Interactions of Mussel Foot Proteins. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06031-6_4

Download citation

Publish with us

Policies and ethics