Skip to main content

Causal Structure Discovery for Spatio-temporal Data

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8421))

Included in the following conference series:

Abstract

Numerous causal structure discovery methods have been proposed recently but none of them has taken possible time-varying structure into consideration. In this paper, we introduce a notion of causal time-varying dynamic Bayesian network (CTV-DBN) and define a causal boundary to govern cross time information sharing. Although spatio-temporal data have been investigated by multiple disciplines; by reducing structure discovery into a set of optimization problems, CTV-DBN is a scalable solution targeting large datasets. CTV-DBN is constructed using asymmetric kernels to address sample scarcity and to adhere to causal principles; while maintaining good variance and bias trade-off. We explore trajectory data collected from mobile devices which are known to exhibit heterogeneous patterns, data sparseness and distribution skewness. Contrary to a naïve method to divide space by grids, we capture the moving objects’ view of space by using density-based clustering to overcome the problems. In our experiments, CTV-DBN is used to reveal the evolution of time-varying region macro structure in a ring road system based on trajectories, and to obtain a local time-varying road junction dependency structure based on static traffic flow sensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: SIGMOD Conference, pp. 49–60 (1999)

    Google Scholar 

  2. Aurenhammer, F., Klein, R.: Voronoi Diagrams, ch. 5, pp. 201–290. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  3. Bain, L.J., Engelhardt, M.: Introduction to probability and mathematical statistics, vol. 4. Duxbury Press, Belmont (1992)

    MATH  Google Scholar 

  4. Birant, D., Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  5. Chawla, S., Zheng, Y., Hu, J.: Inferring the root cause in road traffic anomalies. In: ICDM, pp. 141–150 (2012)

    Google Scholar 

  6. Clarke, H., Hawkins, A.: Economic framework for melbourne traffic planning. Agenda 13(1), 63–80 (2006)

    Google Scholar 

  7. Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning 90(2), 191–230 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ester, M., Peter Kriegel, H., J.S, Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  9. Gospodinov, N., Hirukawa, M.: Time series nonparametric regression using asymmetric kernels with an application to estimation of scalar diffusion processes (2008)

    Google Scholar 

  10. Gospodinov, N., Hirukawa, M.: Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels. Journal of Empirical Finance (2012)

    Google Scholar 

  11. Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: NIPS, pp. 682–690 (2009)

    Google Scholar 

  12. Grzegorczyk, M., Husmeier, D.: Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning 83(3), 355–419 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall, P., Wehrly, T.E.: A geometrical method for removing edge effects from kernel-type nonparametric regression estimators. Journal of the American Statistical Association 86(415), 665–672 (1991)

    Article  MathSciNet  Google Scholar 

  14. Hou, X., Zhang, J., Du, C., Zhang, L.: Research the influence of the ring road factor on route choice. In: 2009 17th International Conference on Geoinformatics, pp. 1–6. IEEE (2009)

    Google Scholar 

  15. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment 1(1), 1068–1080 (2008)

    Google Scholar 

  16. Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. In: Data Mining and Knowledge Discovery Handbook, pp. 855–874 (2010)

    Google Scholar 

  17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  18. Lemmer, J.F.: The causal Markov condition, fact or artifact? SIGART Bulletin 7(3), 7–3 (1996)

    Google Scholar 

  19. Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams. In: KDD, pp. 1010–1018 (2011)

    Google Scholar 

  20. Liu, Y., Niculescu-Mizil, A., Lozano, A.C., Lu, Y.: Learning temporal causal graphs for relational time-series analysis. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 687–694 (2010)

    Google Scholar 

  21. Lu, C.-T., Lei, P.-R., Peng, W.-C., Su, I.-J.: A framework of mining semantic regions from trajectories. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 193–207. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Mackenzie, M., Tieu, A.K.: Asymmetric kernel regression. IEEE Transactions on Neural Networks 15(2), 276–282 (2004)

    Article  Google Scholar 

  23. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, Computer Science Division (2002)

    Google Scholar 

  24. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  25. Robinson, J.W., Hartemink, A.J.: Non-stationary dynamic Bayesian networks. In: NIPS, pp. 1369–1376 (2008)

    Google Scholar 

  26. Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. Journal of Machine Learning Research 11, 3647–3680 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic bayesian networks. In: NIPS, pp. 1732–1740 (2009)

    Google Scholar 

  28. Spirtes, P.: Introduction to causal inference. Journal of Machine Learning Research 11, 1643–1662 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2000)

    Google Scholar 

  30. Wang, M., Wang, A., Li, A.: Mining spatial-temporal clusters from geo-databases. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 263–270. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio-temporally correlated time series using markov models. Proceedings of the VLDB Endowment, 6 (2013)

    Google Scholar 

  32. Zhang, S., Karunamuni, R., Jones, M.: An improved estimator of the density function at the boundary. Journal of the American Statistical Association 94(448), 1231–1240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhao, P., Lu, B., de Roo, G.: The impact of urban growth on commuting patterns in a restructuring city: Evidence from Beijing. Papers in Regional Science 90(4), 735–754 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chu, V.W., Wong, R.K., Liu, W., Chen, F. (2014). Causal Structure Discovery for Spatio-temporal Data. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science, vol 8421. Springer, Cham. https://doi.org/10.1007/978-3-319-05810-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05810-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05809-2

  • Online ISBN: 978-3-319-05810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics