Skip to main content

A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 77))

Abstract

The aim of this work is to derive a well-balanced numerical scheme to approximate the solutions of the Euler equations with a gravitational potential. This system admits an infinity of steady state solutions which are not all known in an explicit way. Among all these solutions, the hydrostatic atmosphere has a special physical interest. We develop an approximate Riemann solver using the formalism of Harten, Lax and van Leer, which takes into account the source term. The resulting numerical scheme is proven to be robust, to preserve exactly the hydrostatic atmosphere and to preserve an approximation of all the other steady state solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chalons, C., Coquel, F., Godlewski, E., Raviart, P.A., Seguin, N.: Godunov-type schemes for hyperbolic systems with parameter-dependent source. the case of euler system with friction. Math. Models Methods Appl. Sci. 20(11), 2109–2166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Desveaux, V.: Contribution à l’approximation numérique des systèmes hyperboliques. Ph.D. thesis, Université de Nantes (2013)

    Google Scholar 

  4. Gallice, G.: Positive and entropy stable godunov-type schemes for gas dynamics and mhd equations in lagrangian or eulerian coordinates. Numer. Math. 94(4), 673–713 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate godunov schemes to compute shallow-water equations with topography. Comput. & Fluids 32(4), 479–513 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. & Math. Appl. 39(9), 135–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harten, A., Lax, P., Van Leer, B.: On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM review 25, 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. Tech. rep, Seminar für Angewandte Mathematik Eidgenössische Technische Hochschule (2013)

    Google Scholar 

  9. LeVeque, R.: Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luo, J., Xu, K., Liu, N.: A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field. SIAM J. Sci. Comput. 33(5), 2356–2381 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by ANR-12-IS01-0004-01 GEONUM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Desveaux, V., Zenk, M., Berthon, C., Klingenberg, C. (2014). A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-05684-5_20

Download citation

Publish with us

Policies and ethics