Skip to main content

Evolution, Lunar: From Magma Ocean to Crust Formation

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science

Introduction

The lunar crust provides a record of the planetary formation and early evolutionary processes and contains a wealth of information about the origin and evolution of the Earth-Moon system (e.g., Taylor 1982; NRC 2007; Canup 2008, 2012; Cuk and Stewart 2012; Young et al. 2016). Understanding these processes is crucial for the reconstruction of the early evolutionary stages of the Earth, e.g., the early geological evolution of a terrestrial planet, inner Solar System impact bombardment, and the solar and galactic environment throughout the last 4.5 billion years (Ga) (e.g., NRC 2007; Crawford et al. 2012).

Our knowledge of the lunar highland crust has advanced enormously. Studies of lunar meteorites; experimental and computational studies; remote sensing of mineralogy, chemistry, and topography of the lunar surface; new gravity data; geochronology; geochemistry, especially isotopic constraints; and the abundances and source reservoirs of lunar volatiles have brought, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alibert C, Norman MD, McCulloch MT (1994) An ancient age for a ferroan anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58:2921–2926

    Article  ADS  Google Scholar 

  • Arai T, Takeda H, Yamaguchi A, Ohtake M (2008) A new model of lunar crust: asymmetry in crustal composition and evolution. Earth Planets Space 60:433–444

    Article  ADS  Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, Berlin, 422

    Book  Google Scholar 

  • Binder AB (1986) The initial thermal state of the Moon. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon. Edwards Bros, Houston, pp 425–434

    Google Scholar 

  • Borg LE, Norman M, Nyquist L, Bogard D, Snyder G, Taylor L, Lindstrom M (1999) Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta 63:2679–2691

    Article  ADS  Google Scholar 

  • Borg LE, Amy MG, Charles KS, Donald JP, Ian DH, Thomas LO, Erick R, Greg B (2009) Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochimica et Cosmochimica Acta 73, no. 13, pp 3963–3980

    Google Scholar 

  • Borg LE, Connelly J, Boyet M, Carlson R (2011) Chronological evidence that the Moon is either young or did not have a lunar magma ocean. Nature 477:70–72

    Article  ADS  Google Scholar 

  • Borg LE, Gaffney AM, Shearer CK (2012) Chronologic confusion in the lunar highlands. Second conference on the lunar highland crust, Bozeman, #9008

    Google Scholar 

  • Borg LE, Gaffney AM, Shearer CK (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci 50:715–732

    Article  ADS  Google Scholar 

  • Boyet M, Carlson RW (2007) A highly depleted moon or a non-magma ocean origin for the lunar crust? Earth Planet Sci Lett 262:505–516

    Article  ADS  Google Scholar 

  • Cahill JT, Floss C, Anand M, Taylor LA, Nazarov MA, Cohen BA (2004) Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400. Meteorit Planet Sci 39:503–529

    Article  ADS  Google Scholar 

  • Calzada-Diaz A, Joy KH, Crawford IA, Nordheim TA (2015) Constraining the source regions of lunar meteorites using orbital geochemical data. Meteorit Planet Sci 50:214–228. doi:10.1111/maps.12412

    Article  ADS  Google Scholar 

  • Canup RM (2008) Lunar-forming collisions with pre-impact rotation. Icarus 196:518–538

    Article  ADS  Google Scholar 

  • Canup RM (2012) Forming a moon with an earth-like composition via a giant impact. Science 338:1052–1055

    Article  ADS  Google Scholar 

  • Canup RM, Visscher C, Salmon J, Fegley B Jr (2015) Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nat Geosci 8:918–921

    Article  ADS  Google Scholar 

  • Carlson RW, Lugmair GW (1981) Time and duration of lunar crust formation. Earth Planet Sci Lett 56:1–8

    Article  ADS  Google Scholar 

  • Carlson RW, Lugmair GW (1988) The age of ferroan anorthosite 60025: oldest crust on the Moon? Earth Planet Sci Lett 90:119–130

    Article  ADS  Google Scholar 

  • Cohen BA, Swindle TD, Kring DA (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290:1754–1756

    Article  ADS  Google Scholar 

  • Cohen BA, Swindle TD, Kring DA (2005) Geochemistry of 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implications for lunar bombardment history. Meteorit Planet Sci 40:755–777

    Article  ADS  Google Scholar 

  • Crawford IA, Joy KH (2014) Lunar exploration: opening a window into the history and evolution of the Earth-Moon system. Phil Trans R Soc A (Origin of the Moon) 372:20130315. doi:10.1098/rsta.2013.0315

    Article  ADS  Google Scholar 

  • Crawford IA, Anand M, Cockell CS, Falcke H, Green DA, Jaumann R, Wieczorek MA (2012) Back to the Moon: the scientific rationale for resuming lunar surface exploration. Planet Space Sci 74:3–14

    Article  ADS  Google Scholar 

  • Crawford IA, Joy KH, Anand M (2014) Lunar exploration. In: Spohn T, Johnson TV, Breuer D (eds) Encyclopedia of the solar system 3rd addition. Elsevir, Part V - Earth and Moon as Planets; sub-chapter 25

    Google Scholar 

  • Crites ST, Lucey PG (2015) Revised mineral and Mg# maps of the moon from integrating results from the lunar prospector neutron and gamma-ray spectrometers with clementine spectroscopy. Am Mineral 100:973–982

    Article  ADS  Google Scholar 

  • Cuk M, Stewart ST (2012) Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338:1047–1052

    Article  ADS  Google Scholar 

  • Donaldson Hanna KL, Cheek LC, Pieters CM, Mustard JF, Greenhagen BT, Thomas IR, Bowles NE (2014) Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. J Geophys Res Planets 119:1516–1545

    Article  ADS  Google Scholar 

  • Delano JW (2009) Scientific exploration of the moon. Elements 5(1):11–16

    Article  Google Scholar 

  • Demidova SI, Nazarov MA, Lorenz CA, Kurat G, Brandstaetter F, Ntaflos T (2007) Chemical composition of lunar meteorites and the lunar crust. Petrology 15:386–407

    Article  Google Scholar 

  • Dreibus G, Kruse H, Spettel B, Waenke H (1977) The bulk composition of the Moon and the eucrite parent body. In: Proceedings of the 8th lunar science conference, Houston, pp 211–227

    Google Scholar 

  • Elardo SM, Draper DS, Shearer CK Jr (2011) Lunar magma ocean crystallization 423 revisited: bulk composition, early cumulate mineralogy, and the source regions of the 424 highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045

    Article  ADS  Google Scholar 

  • Elkins Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304:326–336

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Van Orman JA, Bradford HH, Grove TL (2002) Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing required. Earth Planet Sci Lett 196:239–249

    Article  ADS  Google Scholar 

  • Elphic RC, Lawrence DJ, Feldman WC, Barraclough BL, Maurice S, Binder AB, Lucey PG (2000) Lunar rare earth element distribution and ramifications for FeO and TiO2: lunar prospector neutron spectrometer observations. J Geophys Res 105:20333–20345

    Article  ADS  Google Scholar 

  • Fernandes VA, Fritz J, Weiss BP, Garrick-Bethell I, Shuster DL (2013) The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteorit Planet Sci 48:241–269

    Article  ADS  Google Scholar 

  • Floss C, James OB, McGee JJ, Crozaz G (1998) Lunar ferroan anorthosite petrogenesis: clues from trace element distributions in FAN subgroups. Geochim Cosmochim Acta 62:1255–1283

    Article  ADS  Google Scholar 

  • Gaffney AM, Borg LE, Asmerom Y, Shearer CK, Burger PV (2011) Disturbance of isotope systematics during experimental shock and thermal metamorphism of a lunar basalt with implications for martian meteorite chronology. Meteorit Planet Sci 46:35–52

    ADS  Google Scholar 

  • Garrick-Bethell I, Nimmo F, Wieczorek MA (2010) Structure and formation of the lunar farside highlands. Science 330:949–951

    Article  ADS  Google Scholar 

  • Gillis JJ, Jolliff BJ, Korotev RL (2004) Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from lunar prospector and clementine data. Geochim Cosmochim Acta 68:3791–3805

    Article  ADS  Google Scholar 

  • Greenhagen BT, Lucey PG, Wyatt MB, Glotch TD, Allen CC, Arnold JA, Bandfield JL, Bowles NE, Donaldson Hanna KL, Hayne PO, Song E, Thomas IR, Paige DA (2010) Global silicate mineralogy of the Moon from the diviner lunar radiometer. Science 329:1507–1509

    Article  ADS  Google Scholar 

  • Gross J, Treiman AH, Mercer CN (2014) Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet Sci Lett 388:318–328

    Article  ADS  Google Scholar 

  • Hanan BB, Tilton GR (1987) 60025: relict of primitive lunar crust? Earth Planet Sci Lett 84:15–21

    Article  ADS  Google Scholar 

  • Hartmann WK (1970) Lunar cratering chronology. Icarus 2:299–301

    Article  ADS  Google Scholar 

  • Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of mars. Space Sci Rev 96:165–194

    Article  ADS  Google Scholar 

  • Haskin LA, Lindstrom MM, Salpas PA, Lindstrom DJ (1981) On compositional variations among lunar anorthosites. Proc Lunar Planet Sci Conf 12(B):41–66

    Google Scholar 

  • Haskin LA, Korotev RL, Rockow KM, Jolliff BL (1998) The case for an Imbrium origin of the Apollo thorium-rich impact-melt breccias. Meteorit Planet Sci 33:959–975

    Article  ADS  Google Scholar 

  • Haskin LA, Gillis JJ, Korotev RL, Jolliff BL (2000) The materials of the lunar procellarum KREEP terrane: a synthesis of data from geomorphological mapping, remote sensing, and sample analyses. J Geophys Res 105:20403–20415

    Article  ADS  Google Scholar 

  • Hawke BR, Peterson CA, Blewett DT, Bussey DBJ, Lucey PG, Taylor GJ, Spudis PD (2003) Distribution and modes of occurrence of lunar anorthosite. J Geophys Res 108:5050. doi:10.1029/2002JE001890, E6

    Article  Google Scholar 

  • Herbert F (1980) Time-dependent lunar density models. Proc Lunar Planet Sci Conf 11th: 2015–2030

    Google Scholar 

  • Hess PC (1994) Petrogenesis of lunar troctolites. J Geophys Res 99(E9):19083–19093

    Article  ADS  MathSciNet  Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514

    Article  ADS  Google Scholar 

  • Hess PC, Parmentier EM (2001) Thermal evolution of a thicker KREEP liquid layer. J Geophys Res: Planets 106(E11):28023–28032

    Article  Google Scholar 

  • Hiesinger H, Head JWIII (2006) New views of lunar geoscience: an introduction and overview. Reviews in mineralogy and geochemistry. In new views on the moon. Rev Mineral 60:1–81

    Article  Google Scholar 

  • Hurwitz DM, Kring DA (2014) Differentiation of the South Pole-Aitken basin impact melt sheet: implications for lunar exploration. J Geophys Res: Planets 119:1110–1133

    Article  ADS  Google Scholar 

  • James OB, Lindstrom MM, Flohr MK (1989) Ferroan anorthosite from lunar breccia 64435: implications for the origin and history of lunar ferroan anorthosites. In: Proceedings of the 19th lunar and planetary science conference, Houston, pp 219–243

    Google Scholar 

  • Jolliff BL, Haskin LA (1995) Cogenetic rock fragments from a lunar soil: evidence of a ferroan noritic-anorthosite pluton on the Moon. Geochim Cosmochim Acta 59:2345–2374

    Article  ADS  Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105:4197–4416

    Article  ADS  Google Scholar 

  • Joy KH (2007) Ph. D. thesis: ‘topics in lunar evolution using sample analysis and remotely sensed information’. University of London, July 2007

    Google Scholar 

  • Joy KH (2013) Trace elements in lunar plagioclase as indicators of source lithology. 44th lunar and planetary science conference, Houston, #1033

    Google Scholar 

  • Joy KH, Arai T (2013) Lunar meteorites: new insights into the geological history of the Moon. Astron Geophys 54:4.28–4.32

    Article  Google Scholar 

  • Joy KH, Crawford IA, Russell SS, Kearsley AT (2010) Lunar meteorite regolith breccias: an in situ study of impact melt composition using LA-ICP-MS and implications for the composition of the lunar crust. Meteorit Planet Sci 45:917–946

    Article  ADS  Google Scholar 

  • Jutzi M, Asphaug E (2011) Forming the lunar farside highlands by accretion of a companion moon. Nature 476(7358):69–72

    Article  ADS  Google Scholar 

  • Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chem Erde 65:297–346

    Article  Google Scholar 

  • Korotev RL (2012) Lunar meteorites from Oman. Meteorit Planet Sci 47:1365–1402

    Article  ADS  Google Scholar 

  • Korotev RL (2013) The lunar meteorite list http://meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm#DHO303

  • Korotev RL, Haskin LA (1988) Europium mass balance in polymict samples and implications for plutonic rocks of the lunar crust. Geochim Cosmochim Acta 52:1795–1813. doi:10.1016/0016-7037(88)90004-X

    Article  ADS  Google Scholar 

  • Korotev RL, Jolliff BL (2001) The curious case of the lunar magnesian granulitic breccias. In: Lunar and planetary science conference, Houston, vol 32, p 1455

    Google Scholar 

  • Korotev RL, Jolliff BL, Zeigler RA, Gillis JJ, Haskin LA (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta 67:4895–4923

    Article  ADS  Google Scholar 

  • Korotev RL, Zeigler RA, Jolliff BL (2006) Feldspathic lunar meteorites Pecora Escarpment 02007 and Dhofar 489: contamination of the surface of the lunar highlands by post-basin impacts. Geochim Cosmochim Acta 70:5935–5957

    Article  ADS  Google Scholar 

  • Korotev RL, Jolliff BL, Zeigler RA (2010) On the origin of the moon’s feldspathic highlands, pure anorthosite, and the feldspathic lunar meteorites. 41st lunar and planetary science conference, Houston, # 1533

    Google Scholar 

  • Korotev RL, Jolliff BL, Zeigler RA (2012) What lunar meteorites tell us about the lunar highlands crust. Second conference on the lunar highland crust, Bozeman, # 9003

    Google Scholar 

  • Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the moon. J Geophys Res 118:1435–1452

    Article  Google Scholar 

  • Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, Peslier AH (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351

    Article  ADS  Google Scholar 

  • Lawrence DJ, Elphic RC, Feldman WC, Prettyman TH (2003) Small-area thorium features on the lunar surface. J Geophys Res 108:5102

    Article  Google Scholar 

  • Le Feuvre M, Wieczorek MA (2011) Nonuniform cratering of the moon and a revised crater chronology of the inner solar system. Icarus 214:1–20

    Article  ADS  Google Scholar 

  • Lindstrom MM, Lindstrom DJ (1986) Lunar granulites and their precursor anorthositic norites of the early lunar crust. Proceedings of the sixteenth lunar and planetary science conference, Part 2. J Geophys Res 91:D263–D276

    Google Scholar 

  • Longhi J (1980) A model of early lunar differentiation. In: Proceedings of the 11th lunar and planetary science conference, Houston, pp 289–315

    Google Scholar 

  • Longhi J (2003) A new view of lunar ferroan anorthosites: postmagma ocean petrogenesis. J Geophys Res 108:2–1

    Article  Google Scholar 

  • Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934

    Article  ADS  Google Scholar 

  • Longhi J, Ashwal L (1985) Two-stage models for lunar and terrestrial anorthosites: petrogenesis without a magma ocean. J Geophys Res Sold Earth 90:C571–C584

    Article  ADS  Google Scholar 

  • Longhi J, Boudreau AE (1979) Complex igneous processes and the formation of the primitive lunar crustal rocks. Proc Lunar Planet Sci Conf 10th: 2085–2105

    Google Scholar 

  • Longhi J, Vander Auwera J, Fram MS, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J Petrol 40:339–362

    Article  Google Scholar 

  • Loper DE, Werner CL (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. J Geophys Res 107(E6):5046

    Article  Google Scholar 

  • Lucey PG (2004) Mineral maps of the moon. Geophys Res Lett 31:L08701

    Article  ADS  Google Scholar 

  • McCallum IS, Schwartz JM, O’Brien HE (1997) Minor elements in plagioclase in evolved lunar crustal rocks. Lunar Planet Sci XXVIII:897–898, abstract 1594

    ADS  Google Scholar 

  • Meyer J, Elkins-Tanton L, Wisdom J (2010) Coupled thermal-orbital evolution of the early Moon. Icarus 208:1–10

    Article  ADS  Google Scholar 

  • Miljkovic K, Wieczorek MA, Gareth SC, Laneuville M, Neumann GA, Melosh HJ, Solomon SC, Phillips RJ, Smith DE, Zuber MT (2013) Asymmetric distribution of lunar impact basins caused by variations in target properties. Science 342:724–726

    Article  ADS  Google Scholar 

  • Mimoun D, Wieczorek MA, Alkalai L, Banerdt WB, Baratoux D, Bougeret J-L, Bouley S, Cecconi B, Falcke H, Flohrer J, Garcia RF, Grimm R, Grott M, Gurvits L, Jaumann R, Johnson CL, Knapmeyer M, Kobayashi N, Konovalenko A, Lawrence D, Le Feuvre M, Lognonné P, Neal C, Oberst J, Olsen N, Röttgering H, Spohn T, Vennerstrom S, Woan G, Zarka P (2012) Farside explorer: unique science from a mission to the farside of the Moon. Exp Astron 33:529–585. doi:10.1007/s10686-011-9252-3

    Article  ADS  Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355:144–151. doi:10.1016/j.epsl.2012.07.037

    Article  ADS  Google Scholar 

  • Morota T, Furumoto M (2003) Asymmetrical distribution of rayed craters of the Moon. Earth Planet Sci Lett 206:315–323

    Article  ADS  Google Scholar 

  • Nakamura R, Yamamoto S, Matsunaga T, Ishihara Y, Morota T, Hiroi T, Takeda H, Ogawa Y, Yokota Y, Hirata N, Ohtake M, Saiki K (2012) Compositional evidence for an impact origin of the Moon’s procellarum basin. Nat Geosci 5:775–778. doi:10.1038/NGEO1614

    Article  ADS  Google Scholar 

  • Narendranath S, Athiray PS, Sreekumar P, Kellett BJ, Alha L, Howe CJ, Joy KH, Grande M, Huovelin J, Crawford IA, Unnikrishnan U, Lalita S, Subramaniam S, Weider SZ, Nittler LR, Gasnault O, Rothery D, Fernandes VA, Bhandari N, Goswami JN, Wiezoreck MA, C1XS team (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray spectrometer (C1XS): results from a lunar highland region. Icarus 214:53–66. doi:10.1016/j.icarus.2011.04.010

    Article  ADS  Google Scholar 

  • National Research Council (2007) The scientific context for exploration of the Moon. The National Academies Press, Washington, DC

    Google Scholar 

  • Neal CR, Taylor LA (1992) Petrogenesis of mare basalts: a record of lunar volcanism. Geochim Cosmochim Acta 56:2177–2211

    Article  ADS  Google Scholar 

  • Nekvasil H, Lindsley DH, DiFrancesco N, Catalano T, Coraor AE, Charlier B (2015) Uncommon behavior of plagioclase and the ancient lunar crust. Geophys Res Lett 42(24):10573–10579

    Article  ADS  Google Scholar 

  • Norman MD (2009) The lunar cataclysm: reality or “myth conception”? Elements 5:23–28. doi:10.2113/gselements.5.1.23

    Article  Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661

    Article  ADS  Google Scholar 

  • Nyquist L, Bogard D, Yamaguchi A, Shih C-Y, Karouji Y, Ebihara M, Reese Y, Garrison D, McKay G, Takeda H (2006) Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. Geochim Cosmochim Acta 70:5990–6015

    Article  ADS  Google Scholar 

  • Nyquist L, Shih C-Y, Reese D, Park J, Bogard DD, Garrison DH, Yamaguchi A (2010) Lunar crustal history recorded in lunar anorthosites. 41st lunar and planetary science conference, Houston, #1383

    Google Scholar 

  • O’Hara MJ (2000) Flood basalts, basalt floods or topless Bushvelds? Lunar petrogenesis revisited. J Petrol 41(11):1545–1651

    Article  Google Scholar 

  • O’Hara MJ, Niu YL (2015) Obvious problems in lunar petrogenesis and new perspectives. In: Foulger GR, Lustrino M, King SD (ed) The interdisciplinary earth: a volume in honor of Don L. Anderson. Geological Society of America Special Paper 514 and American Geophysical Union Special Publication 71. pp 339–366. doi:10.1130/2015.2514

    Google Scholar 

  • Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T, Honda C, Ogawa Y, Torii M, Miyamoto H, Arai T, Hirata N, Iwasaki A, Nakamura R, Hiroi T, Sugihara T, Takeda H, Otake H, Pieters CM, Saiki K, Kitazato K, Abe M, Asada N, Demura H, Yamaguchi Y, Sasaki S, Kodama S, Terazono J, Shirao M, Yamaji A, Minami S, Akiyama H, Josset J-L (2009) The global distribution of pure anorthosites on the moon. Nature 461:236–240. doi:10.1038/nature08317

    Article  ADS  Google Scholar 

  • Ohtake M, Takeda H, Matsunaga T, Yokota Y, Haruyama J, Morota T, Yamamoto S, Ogawa Y, Hiroi T, Karouji Y, Saiki K, Lucey PG (2012) Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nat Geosci 5:384–388. doi:10.1038/ngeo1458

    Article  ADS  Google Scholar 

  • Palme H, Spettel B, Jochum KH, Dreibus G, Weber H, Weckwerth G, Wänke H, Birschoff A, Stöffler D (1991) Lunar highland meteorites and the composition of the lunar crust. Geochim Cosmochim Acta 55:3105–3122

    Article  ADS  Google Scholar 

  • Papike JJ, Fowler GW, Shearer CK (1997) Evolution of the lunar crust: SIMS study of plagioclase from ferroan anorthosites. Geochim Cosmochim Acta 61:2343–2350

    Article  ADS  Google Scholar 

  • Pernet-Fisher JR, Joy KH (2016) The lunar highlands: old crust, new ideas. Astron Geophys 57(1):1.26–1.30. doi:10.1093/astrogeo/atw039

    Article  Google Scholar 

  • Pernet-Fisher JR, Joy KH, Martin DJP (2016) Plagioclase in Regolith Breccias: critical tool for deciphering the shock history of the lunar highlands. 47th lunar and planetary science conference, Houston [abstract #1499]

    Google Scholar 

  • Pieters CM (1991) Bullialdus: strengthening the case for lunar plutons. Geophys Res Lett 18:2129–2132

    Article  ADS  Google Scholar 

  • Pieters CM, Head JWIII, Gaddis L, Jolliff B, Duke M (2001) Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J Geophys Res 106:28001–28022

    Article  ADS  Google Scholar 

  • Piskorz D, Stevenson DJ (2014) The formation of pure anorthosite on the Moon. Icarus 239:238–243

    Article  ADS  Google Scholar 

  • Prettyman TH, Hagerty JJ, Elphic RC, Feldman WC, Lawrence DJ, McKinney GW, Vaniman DT (2006) Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from lunar prospector. J Geophys Res 111:E12007. doi:10.1029/2005JE002656

    Article  ADS  Google Scholar 

  • Pritchard ME, Stevenson DJ (2000) Thermal implication of lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. The University of Arizona Press, Tucson, pp 179–196

    Google Scholar 

  • Raedeke LD, McCallum IS (1980) A comparison of fractionation trends in the lunar crust and the stillwater complex. In: Papike JJ, MerrilL RB (eds) Proceedings of the conference on the highlands lunar crust. Lunar and Planetary Institute, Houston, pp 133–153

    Google Scholar 

  • Rapp JF (2013) Lunar magma ocean differentiation. Center for lunar science and exploration classroom illustrations. http://www.lpi.usra.edu/nlsi/training/illustrations/planetaryInteriors

  • Rapp JF, Draper DS (2012) Experimental fractional crystallization of the lunar magma ocean. 43rd lunar and planetary science conference, Houston, #1659

    Google Scholar 

  • Rapp JF, Draper DS (2013) Can fractional crystallization of a lunar magma ocean produce the lunar crust? 44th lunar and planetary science conference, Houston, #2732

    Google Scholar 

  • Ringwood AE, Kesson SE (1976) A dynamic model for mare basalt petrogenesis. In: Lunar and planetary science conference proceedings, Houston, vol 7, pp 1697–1722

    Google Scholar 

  • Roy A, Wright JT, Sigurðsson S (2014) Earthshine on a young moon: explaining the lunar farside highlands. Astrophys J Lett 788:2

    Article  ADS  Google Scholar 

  • Russell SS, Joy KH, Jeffries TE, Consolmagno GJSJ, Kearsley AT (2014) Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. Phil Trans R Soc A (Origin of the Moon) A 372:20130241. doi:10.1098/rsta.2013.0241

    Article  ADS  Google Scholar 

  • Ryder G (2003) Bombardment of the Hadean Earth: wholesome or deleterious? Astrobiology 3:3–6

    Article  ADS  Google Scholar 

  • Ryder G, Wood JA (1977) Serenitatis and Imbrium impact melts-implications for large-scale layering in the lunar crust. 8th lunar and planetary science conference proceedings, Houston, pp 655–668

    Google Scholar 

  • Salpas PA, Haskin LA, McCallum IS (1983) Stillwater anorthosites: a lunar analog? Proceedings of the 14th lunar and planetary science conference. J Geophys Res 88(Suppl):B27–B39

    Google Scholar 

  • Schultz PH (2007) A possible link between Procellarum and the South-Pole- Aitken basin. Lunar Planet Sci XXXVIII:1839–1840

    ADS  Google Scholar 

  • Shearer CK, Floss C (2000) Evolution of the moon’s mantle and crust as reflected in trace-element microbeam studies of lunar magmatism. Orig Earth Moon 1:339–359

    ADS  Google Scholar 

  • Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57:4785–4812

    Article  ADS  Google Scholar 

  • Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84:1469–1494

    Article  ADS  Google Scholar 

  • Shearer CK, Papike JJ (2005) Early crustal building processes on the moon: models for the petrogenesis of the magnesian suite. Geochim Cosmochim Acta 69:3445–3461

    Article  ADS  Google Scholar 

  • Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier EM, Borg LE, Longhi J, Elkins-Tanton LT, Neal CR, Antonenko I, Canup RM, Halliday AN, Grove TL, Hager BH, Lee D-C, Wiechert U (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518

    Article  Google Scholar 

  • Shearer CK, Elardo SM, Petro NE, Borg LE, McCubbin FM (2015) Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am Mineral 100(1):294–325

    Article  ADS  Google Scholar 

  • Shervais JW, McGee JJ (1998) Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks. Geochim Cosmochim Acta 62(17):3009–3023

    Article  ADS  Google Scholar 

  • Shervais JW, McGee JJ (1999) KREEP cumulates in the western lunar highlands: ion and electron microprobe study of alkali-suite anorthosites and norites from Apollo 12 and 14. Am Mineral 84(5–6):806–820

    Article  ADS  Google Scholar 

  • Smith J, Anderson A, Newton R, Olsen E, Wyllie P, Crewe A, Isaacson M, Johnson D (1970) Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. Geochim Cosmochim Acta 1:897–925

    Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts- combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823

    Article  ADS  Google Scholar 

  • Snyder GA, Taylor LA, Halliday AN (1995) Chronology and petrogenesis of the lunar highlands suite: cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta 59:1185–1203

    Article  ADS  Google Scholar 

  • Solomon SC (1986) On the early thermal state of the Moon. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon. Edwards Bros, Houston, pp 435–452

    Google Scholar 

  • Solomon SC, Longhi J (1977) Magma oceanography. I – Thermal evolution. 8th lunar science conference, Houston, Proceedings, pp 583–599

    Google Scholar 

  • Solomon SC, Comer RP, Head JW (1982) The evolution of impact basins: viscous relaxation of topographic relief. J Geophys Res 87:3975–3992

    Article  ADS  Google Scholar 

  • Spera FJ (1992) Lunar magma transport phenomena. Geochim Cosmochim Acta 56(6):2253–2265

    Article  ADS  Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins, vol 8, Cambridge planetary science series. Cambridge University Press, New York, 263 pp

    Book  Google Scholar 

  • Spudis PD, Davis PA (1985) How much anorthosite in the lunar crust? Implications for lunar crustal origin. 16th lunar and planetary science conference, Houston, pp 807–808

    Google Scholar 

  • Spudis PD, Bussey BJ, Gillis J (2000) Petrologic mapping of the Moon from clementine and lunar prospector data: incorporation of new thorium data. 31st lunar and planetary science conference, Houston, #1414

    Google Scholar 

  • Spudis PD, Zellner N, Delano J, Whittet DCB, Fessler B (2002) Petrologic mapping of the Moon: a new approach. 33rd lunar and planetary science conference, Houston, #1104

    Google Scholar 

  • Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF (2006) Cratering history and lunar chronology. Rev Mineral Geochem 60:519–596

    Article  Google Scholar 

  • Takeda H, Yamaguchi A, Bogard DD, Karouji Y, Ebihara M, Ohtake M, Saiki K, Arai T (2006) Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet Sci Lett 247:171–184

    Article  ADS  Google Scholar 

  • Taylor SR (1982) Planetary Sciences: a lunar perspective. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Taylor GJ (2009) Ancient lunar crust: origin, composition, and implications. Elements 5(1):17–22

    Article  Google Scholar 

  • Taylor SR, McLennan S (2009) Planetary crusts: their composition, origin and evolution, vol 10. Cambridge University Press, New York

    Google Scholar 

  • Taylor GJ, Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Melosh HJ, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, Zuber MT (2013) Revised thickness of the lunar crust from GRAIL data: implications for lunar bulk composition. 44th lunar and planetary science conference, Houston, #1783

    Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Article  ADS  Google Scholar 

  • Tompkins S, Pieters CM (1999) Mineralogy of the lunar crust: results from clementine. Meteorit Planet Sci 34(1):25–41

    Article  ADS  Google Scholar 

  • Tonks WB, Melosh HJ (1990) The physics of crystal settling and suspension in a turbulent magma ocean. Orig Earth 1:151–174

    ADS  Google Scholar 

  • Treiman AH, Maloy AK, Shearer CK Jr, Gross J (2010) Magnesian anorthositic granulites in lunar meteorites in lunar meteorites Allan Hills 81005 and Dhofar 309: geochemistry and global significance. Meteorit Planet Sci 45:163–180

    Article  ADS  Google Scholar 

  • Turner G (1979) A Monte Carlo fragmentation model for the production of meteorites – implications for gas retention ages Lunar and Planetary Science Conference, 10th, Houston, March 19–23, 1979, Proceedings, vol 2. Pergamon Press, New York, pp 1917–1941. (A80-23617 08-91)

    Google Scholar 

  • Turner G, Cadogan PH, Yonge CJ (1973) Argon selenochronology. In: Proceedings, 4th lunar science conference, Houston, pp 1889–1914

    Google Scholar 

  • Vander Auwera J, Weis D, Duchesne JC (2006) Marginal mafic intrusions as indicators of downslope draining of dense residual melts in anorthositic diapirs? Lithos 89:326–352

    Article  ADS  Google Scholar 

  • Vaniman D, Dietrich J, Taylor GJ, Heiken G (1991) Exploration, samples, and recent concepts of the Moon. In: Heiken GH, Vaniman D, French BM (eds) The lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, New York, pp 5–26

    Google Scholar 

  • Vaughan WM, Head JW, Wilson L, Hess PC (2013) Geology and petrology of enormous volumes of impact melt on the Moon: a case study of the orientale basin impact melt sea. Icarus 223:749–765

    Article  ADS  Google Scholar 

  • Walker D (1983) Lunar and terrestrial crust formation. Proceedings of the 14th lunar and planetary science conference, Part 1. J Geophys Res 88(Suppl): B17–B25

    Google Scholar 

  • Warner JL, Simonds CH, Phinney WC (1976) Genetic distinction between anorthosites and Mg-rich plutonic rocks: new data from 76255. Lunar and Planetary Science Conference. Vol. 7

    Google Scholar 

  • Warner JL, Phinney WC, Bickel CE, Simond CH (1977) Feldspathic granulitic impactites and pre-final bombardment lunar evolution. In: Proceedings of the 8th lunar science conference, Houston, pp 2051–2066

    Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH (1989) KREEP: major-element diversity, trace-element uniformity (Almost). In: Taylor GJ, Warren PH (eds) Workshop on Moon in transition: Apollo 14, KREEP, and evolved lunar rocks. LPI technical report 89-03. Lunar and Planetary Institute, pp 149

    Google Scholar 

  • Warren PH (1990) Lunar anorthosites and the magma-ocean plagioclase floatation hypothesis: importance of FeO enrichment in the parent magma. Am Mineral 75:46–58

    ADS  Google Scholar 

  • Warren PH (1993) A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am Mineral 78:360–376

    ADS  Google Scholar 

  • Warren PH (2012) Let’s get real: not every lunar rock sample is big enough to be representative for every purpose. Second conference on the lunar highlands crust, Bozeman, # 9034

    Google Scholar 

  • Warren PH, Wasson JT (1979) Origin of KREEP. Rev Geophys 17:73–88

    Article  ADS  Google Scholar 

  • Wasson JT, Warren PH (1980) Contribution of the mantle to the lunar asymmetry. Icarus 44:752–771

    Article  ADS  Google Scholar 

  • Wetherill GW (1975) Late heavy bombardment of the moon and terrestrial planets. In: Lunar science conference, 6th, Houston, March 17–21, 1975, Proceedings, vol 2. Pergamon Press, New York, pp 1539–1561. (A78-46668 21-91)

    Google Scholar 

  • Wetherill GW (1976) The role of large bodies in the formation of the Earth and Moon. In: Lunar and planetary science conference proceedings 7th, Houston, pp 3245–3257

    Google Scholar 

  • Wieczorek MA, Le Feuvre M (2009) Did a large impact reorient the Moon? Icarus 200:358–366

    Article  ADS  Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J Geophys Res 105:20417–20430

    Article  ADS  Google Scholar 

  • Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP, Williams JG, Hood LL, Righter K, Neal CR, Shearer CK, McCallum IS, Tompkins S, Hawke BR, Peterson C, Gillis JJ, Bussey B (2006) The constitution and structure of the lunar interior. In new views of the Moon. Rev Mineral Geochem 60:221–364

    Article  Google Scholar 

  • Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ, Melosh HJ, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, Zuber MT (2013) The crust of the Moon as seen by GRAIL. Science 6120:671–675. doi:10.1126/science.1231530

    Article  ADS  Google Scholar 

  • Wilhelms DE (1987) The geologic history of the Moon. U.S. Geological Survery Prof Pap, 1348, 302 pp

    Google Scholar 

  • Wood JA (1970) Petrology of the lunar soil and geophysical implications. J Geophys Res 75(32):6497–6513

    Article  ADS  Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970) Lunar anorthosites. Science 167:602

    Article  ADS  Google Scholar 

  • Yamamoto S, Nakamura R, Matsunaga T, Ogawa Y, Ishihara Y, Morota T, Hirata N, Ohtake M, Hiroi T, Yokota Y, Haruyama J (2012) Massive layer of pure anorthosite on the Moon. Geophys Res Lett 39:L13201. doi:10.1029/2012GL052098

    Article  ADS  Google Scholar 

  • Yamamoto K, Haruyama J, Kobayashi S, Ohtake M, Iwata T, Ishihara Y, Hasebe N (2016) Two-stage development of the lunar farside highlands crustal formation. Planet Space Sci 120:43–47

    Article  ADS  Google Scholar 

  • Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 29:493–496

    Article  ADS  Google Scholar 

  • Zeigler RA, Korotev RL, Jolliff BL (2012) Feldspathic lunar meteorite graves nunatakes 06157, a magnesian piece of the lunar highlands crust. Second conference on the lunar highlands crust, Bozeman, #9033

    Google Scholar 

  • Zuber MT, Smith DE, Watkins MM, Asmar SW, Konopliv AS, Lemoine FG, Melosh HJ, Neumann GA, Phillips RJ, Solomon SC, Wieczorek MA, Williams JG, Goossens SJ, Kruizinga G, Mazarico E, Park RS, Yuan D-N (2013) Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339:668–671

    Article  ADS  Google Scholar 

Download references

Acknowledgments

JG acknowledges NASA grant NNX15AU25G; KHJ acknowledges STFC Grant ST/M001253/1 and Royal Society grant RS/UF140190. Some of the material used was modified from text presented in K. Joy’s Ph.D. thesis (Joy 2007), for which she thanks Ian Crawford for his help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane Gross .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Gross, J., Joy, K.H. (2016). Evolution, Lunar: From Magma Ocean to Crust Formation. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics