Skip to main content

Theoretical and Practical Fundamentals

  • Chapter
  • First Online:
Handbook on Project Management and Scheduling Vol.1

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

Project managers carry out a project with several objectives in mind. They want to finish the project as soon as possible, with the minimum cost, the maximum quality, etc. This chapter studies project scheduling problems when several goals are sought, that is, multi-objective project scheduling problems (MOPSPs) and multi-objective resource-constrained project scheduling problems (MORCPSPs). We will discuss some of the most important issues that have to be taken into account when dealing with these problems. We will also prove some useful results that can help researchers create algorithms for some of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi B, Shadrokh S, Arkat J (2006) Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Appl Math Model 180:146–152

    Google Scholar 

  • Al-Fawzan MA, Haouari M (2005) A bi-objective model for robust resource-constrained project scheduling. Int J Prod Econ 96:175–187

    Article  Google Scholar 

  • Ballestín F, Blanco R (2011) Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems. Comput Oper Res 38 (1):51–62

    Article  Google Scholar 

  • Czyzak P, Jaszkiewicz A (1998) Pareto simulated annealing: a metaheuristic technique for multiple-objective combinatorial optimization. J Multi-Criteria Decis Anal 7(1):34–47

    Article  Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M et al. (eds) Parallel problem solving from nature (PPSN VI). Springer, London, pp 849–858

    Google Scholar 

  • Ehrgott M (2000) Approximation algorithms for combinatorial multicriteria optimization problems. Int Trans Oper Res 7:5–31

    Article  Google Scholar 

  • Ehrgott M, Gandibleux X (2004) Approximative solution methods for multiobjective combinatorial optimization. TOP 12(1):1–88

    Article  Google Scholar 

  • Emelichev VA, Perepelitsa VA (1991) Complexity of vector optimization problems on graphs. Optimization 22:903–918

    Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability – a guide to the theory of NP-completeness. Freeman, San Francisco

    Google Scholar 

  • Hansen P (1979) Bicriterion path problems. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and application. LNEMS, vol 177. Springer, Berlin, pp 109–127

    Chapter  Google Scholar 

  • Hapke M, Slowinski R (2000) Fuzzy set approach to multi-objective and multi-mode project scheduling under uncertainty. In: Slowinski R, Hapke M (eds) Scheduling under fuzziness. Physica, Heidelberg, pp 197–221

    Google Scholar 

  • Hapke M, Jaszkiewicz A, Slowinski R (1997) Fuzzy project scheduling with multiple criteria. Fuzzy systems. In: Proceedings of the sixth IEEE international conference, Barcelona, pp 1277–1282

    Google Scholar 

  • Hapke M, Jaszkiewicz A, Slowinski R (1998) Interactive analysis of multiple-criteria project scheduling problems. Eur J Oper Res 107:315–324

    Article  Google Scholar 

  • Horn J (1997) Multicriteria decision making. In: Back T, Fogel DB, Michalewicz Z (eds) Handbook of evolutionary computation, F1.9. IOP Publishing and Oxford University Press, Bristol, pp 1–15

    Google Scholar 

  • Hwang CL, Masud AS (1979) Multi-objective decision making, methods and applications: a state of the art survey. LNEMS, vol 164. Springer, Berlin

    Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693–1703

    Article  Google Scholar 

  • Nabrzyski J, Wȩglarz J (1995) On an expert system with tabu search for multiobjective project scheduling. In: Proceedings of INRIA/IEEE symposium on emerging technologies and factory automation III, pp 87–94

    Google Scholar 

  • Nabrzyski J, Wȩglarz J (1999) Knowledge-based multiobjective project scheduling problems. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer, Boston, pp 383–413

    Chapter  Google Scholar 

  • Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce resources. Springer, Berlin

    Book  Google Scholar 

  • Odedario BO, Oladokun V (2011) Relevance and applicability of multi-objective resource constrained project scheduling problem. Eng Technol Appl Sci Res 1(6):144–150

    Google Scholar 

  • Pan H, Yeh CH (2003) Ametaheuristic approach to fuzzy project scheduling. In: Palade V, Howlett RJ, Jain L (eds) KES 2003. LNCS, vol 2773. Springer, Heidelberg, pp 1081–1087

    Google Scholar 

  • Schwindt C, Zimmermann J (2002) Parametrische Optimierung als Instrument zur Bewertung von Investitionsprojekten. Z Betriebswirt 72:593–617

    Google Scholar 

  • Serafini P (1986) Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn J, Krabs W (eds) Recent advances and historical development of vector optimization. LNEMS, vol 294. Springer, Berlin, pp 222–232

    Chapter  Google Scholar 

  • Słowiński R (1981) Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. Eur J Oper Res 7:265–273

    Article  Google Scholar 

  • Słowiński R (1989) Multiobjective network scheduling under multiple-category resource constraints. In: Slowinski R, Wȩglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam, pp 151–167

    Google Scholar 

  • Słowiński R, Wȩglarz J (1985). An interactive algorithm for multiobjective precedence and resource constrained scheduling problems. In: Proceedings of the 8 World congress on project management INTERNET85. North-Holland, Amsterdam, pp 866–873

    Google Scholar 

  • Slowiński R, Soniewiclu B, Wȩglarz J (1994) DSS for multiobjective project scheduling. Eur J Oper Res 79(2):220–229

    Article  Google Scholar 

  • Valiant LG, Vazirani VV (1986) NP is as easy as detecting unique solutions. Theor Comput Sci 47:85–93

    Article  Google Scholar 

  • Valls V, Pérez A, Quintanilla S (2009) Skilled workforce scheduling in service centres. Eur J Oper Res 193:791–804

    Article  Google Scholar 

  • Viana A, de Sousa JP (2000) Using metaheuristics in multiobjective resource constraints project scheduling. Eur J Oper Res 120:359–374

    Article  Google Scholar 

  • Xiong J, Chen Y-W, Yang K-W, Zhao Q-S, Xing, L-N (2012) A hybrid multiobjective genetic algorithm for robust resource-constrained project scheduling with stochastic durations. Math Probl Eng 2012. Article ID 786923, 24 pp.

    Google Scholar 

  • Yannibellia V, Amandib A (2013) Project scheduling: a multi-objective evolutionary algorithm that optimizes the effectiveness of human resources and the project makespan. Eng Optim 45(1): 45–65

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. dissertation, Swiss Federal Institute of Technology (ETH), Zurich

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) Sped: improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland

    Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca C, Grunert da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Ministerio de Ciencia e Innovación, MTM2011-23546.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ballestín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ballestín, F., Blanco, R. (2015). Theoretical and Practical Fundamentals. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol.1. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05443-8_19

Download citation

Publish with us

Policies and ethics