Skip to main content

Fault in Transmission Cables and Current Fault Location Methods

  • Chapter
  • First Online:
Online Location of Faults on AC Cables in Underground Transmission Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The problem formulation of this thesis will depend on already existing fault location methods for crossbonded cables. Therefore, a literature study is conducted and the most important references are presented in the following chapter. Firstly, however, the mechanisms leading to faults in high voltage cables are briefly covered in order to examine which fault location methods are applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Katakai, Design of XLPE cables and soundness confirmation methods to extra high voltage XLPE cables, in Transmission and Distribution Conference and Exhibition 2002, Asia Pacific. IEEE/PES, vol 2, pp. 1411–1415 (2002)

    Google Scholar 

  2. B. Koch, Tests on XLPE-insulated cable arcing faults and arc-proofing. IEEE Trans. Power Delivery 3(4), 1289–1295 (1988)

    Article  Google Scholar 

  3. J. Densley, Ageing mechanisms and diagnostics for power cables—an overview. IEEE Electr. Insul. Mag. 17(1), 14–22 (2001)

    Article  Google Scholar 

  4. IEEE guide for fault locating techniques on shielded power cable systems. IEEE Std 1234–2007, pp. 1–37 (2007)

    Google Scholar 

  5. S.H. Kang, J.K. Park, S.W. Min, S.R. Nam, W.K. Park, Fault location algorithm for underground power cables using analytical method. CIGRE General Meeting, B1–206 (2006)

    Google Scholar 

  6. S.-H. Kang, S.-W. Min, S.-R. Nam, J.-K. Park, Fault location algorithm for cross-bonded cables using the singularity of the sheath impedance matrix. Electr. Eng. 89(7), 525–533 (2007)

    Article  Google Scholar 

  7. X.H. Wang, C.K. Jung, J.B. Lee, Y.H. Song, A study on the fault location algorithm on underground power cable system. Electr. Power Syst. Res. 1, 763–769 (2005)

    Google Scholar 

  8. C.K. Jung, J.B. Lee, Fault location algorithm on underground power cable systems using noise cancellation technique, in Transmission and Distribution Conference and Exposition, 2008. IEEE/PES, pp. 1–7, April 2008

    Google Scholar 

  9. A.A. Girgis, C.M. Fallon, D.L. Lubkeman, A fault location technique for rural distribution feeders. IEEE Trans. Ind. Appl. 29(6), 1170–1175 (1993)

    Article  Google Scholar 

  10. S. Santoso, R.C. Dugan, J. Lamoree, A. Sundaram, Distance estimation technique for single line-to-ground faults in a radial distribution system, in Power Engineering Society Winter Meeting, IEEE, vol 4, pp. 2551–2555 (2000)

    Google Scholar 

  11. M.M Saha, J. Izykowski, E.Rosolowski, Fault location on power networks (Springer, 2010)

    Google Scholar 

  12. T. Takagi, Y. Yamakoshi, M. Yamaura, R. Kondow, T. Matsushima, Development of a new type fault locator using the one-terminal voltage and current data. IEEE Power Eng. Rev. PER-2(8), 59–60 (1982)

    Google Scholar 

  13. R.H. Salim, K.C.O. Salim, A.S. Bretas, Further improvements on impedance-based fault location for power distribution systems. IET Gener. Trans. Distrib. 5(4), 467–478 (2011)

    Google Scholar 

  14. M. Gilany, E.S.T. El Din, M.M. Abdel Aziz, D.K. Ibrahim, An accurate scheme for fault location in combined overhead line with underground power cable, in Power Engineering Society General Meeting, IEEE, vol 3, pp. 2521–2527 (2005)

    Google Scholar 

  15. E.S.T.E. Din, M. Gilany, M.M. Abdel Aziz, D.K. Ibrahim, An PMU double ended fault location scheme for aged power cables, in Power Engineering Society General Meeting, IEEE, vol 1, pp. 80–86 (2005)

    Google Scholar 

  16. S.-J. Lee, M.-S. Choi, S.-H. Kang, B.-G. Jin, D.-S. Lee, B.-S. Ahn, N.-S. Yoon, H.-Y. Kim, S.-B. Wee, An intelligent and efficient fault location and diagnosis scheme for radial distribution systems. IEEE Trans. Power Delivery 19(2), 524–532 (2004)

    Google Scholar 

  17. E.C. Senger, G. Manassero, C. Goldemberg, E.L. Pellini, Automated fault location system for primary distribution networks. IEEE Trans. Power Delivery 20(2), 1332–1340 (2005)

    Article  Google Scholar 

  18. L. Eriksson, M.M. Saha, G.D. Rockefeller, An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remore-end infeed. IEEE Trans. Power Apparatus Syst. PAS-104(2), 423–436 (1985)

    Google Scholar 

  19. M.T. Sant, Y.G. Paithankar, Online digital fault locator for overhead transmission line. Proc. Inst. Electr. Eng. 126(11), 1181–1185 (1979)

    Article  Google Scholar 

  20. M.M. Saha, J. Izykowski, E. Rosolowski, B. Kasztenny, A new accurate fault locating algorithm for series compensated lines. IEEE Trans. Power Delivery 14(3), 789–797 (1999)

    Article  Google Scholar 

  21. M.M. Saha, K. Wikstrom, J. Izykowski, E. Rosolowski, Fault location in uncompensated and series-compensated parallel lines, in Power Engineering Society Winter Meeting, IEEE, vol 4, pp. 2431–2436 (2000)

    Google Scholar 

  22. S.M. Brahma, A.A. Girgis, Fault location on a transmission line using synchronized voltage measurements. IEEE Trans. Power Delivery 19(4), 1619–1622 (2004)

    Article  Google Scholar 

  23. V. Cook, Fundamental aspects of fault location algorithms used in distance protection. IEE Proc. C Gener. Transm. Distr. 133(6), 359–368 (1986)

    Article  Google Scholar 

  24. A.T. Johns, S. Jamali, Accurate fault location technique for power transmission lines. IEE Proc. C Gener. Transm. Distr. 137(6), 395–402 (1990)

    Article  Google Scholar 

  25. M.M. Saha, J. Izykowski, E. Rosolowski, A two-end method of fault location immune to saturation of current transformers, in 8th IEE International Conference on Developments in Power System Protection, vol 1, pp. 172–175 (2004)

    Google Scholar 

  26. R. Das, M.S. Sachdev, T.S. Sidhu, A fault locator for radial subtransmission and distribution lines, in Power Engineering Society Summer Meeting, IEEE, vol 1, pp. 443–448 (2000)

    Google Scholar 

  27. G. Preston, Z.M. Radojević, C.H. Kim, V. Terzija, New settings-free fault location algorithm based on synchronised sampling. IET Gener. Transm. Distr. 5(3), 376–383 (2011)

    Article  Google Scholar 

  28. S. Asgarifar, M.T. Hagh, M.M. Hosseini, A novel fault location algorithm for double fed distribution networks, in Power Engineering and Automation Conference (PEAM), IEEE, vol 1, pp. 327–330 (2011)

    Google Scholar 

  29. P. Dawidowski, J. Izykowski, A. Nayir, Non-iterative algorithm of analytical synchronization of two-end measurements for transmission line parameters estimation and fault location, in 7th International Conference on Electrical and Electronics Engineering (ELECO), pp. I-76–I-79 (2011)

    Google Scholar 

  30. V. Leitloff, X. Bourgeat, G. Duboc, Setting constraints for distance protection on underground lines, in 7th International Conference on (IEE) Developments in Power System Protection, pp. 467–470 (2001)

    Google Scholar 

  31. D.A. Tziouvaras, Protection of high-voltage AC cables, in Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, PS ’06, pp. 316–328 (2006)

    Google Scholar 

  32. Teruo Ohno, Dynamic Study on the 400 kV 60 km Kyndbyvarrket Asnarsvarrket Line (Energinet.dk, 1st edn, 2013)

    Google Scholar 

  33. A. Greenwood, Electrical Transients in Power Systems (Wiley, 2nd edn, 1991), ISBN 0-471-62058-0

    Google Scholar 

  34. H.W. Dommel, J.M. Michels, High speed relaying using traveling wave transient analysis, IEEE PES Winter Power Meeting (1978)

    Google Scholar 

  35. IEEE guide for determining fault location on ac transmission and distribution lines. IEEE Std C37.114-2004, pp. 1–36 (2005)

    Google Scholar 

  36. M. Coury, D.V.F. da Silva, M. Oleskovicz, A fault locator for three-terminal lines based on wavelet transform applied to synchronized current and voltage signals. Transmission and Distribution Conference and Exposition: Latin America, TDC ’06, IEEE/PES, pp. 1–6 (2006)

    Google Scholar 

  37. G.W. Philips, S.M. Chin, M.A. Redfern, F. Jiang, Z.Q. Bo, A GPS based fault location scheme for distribution line using wavelet transform technique. IPST 99—International Conference On Power System Transients, New Protection Techniques, pp. 224–228 (1999)

    Google Scholar 

  38. M.A. Ramos, J.S. Filho, J.M. Beck, S.L. Zimath, N. Mueller, A GPS based fault location scheme for distribution line using wavelet transform technique. 63rd Annual Conference on Protective Relay Engineers, pp. 1–7 (2010)

    Google Scholar 

  39. M. Han, C. Lee, H. Park, H. Jung, Y. Park, M. Shin, Novel technique for fault location estimation on parallel transmission lines using wavelet. Electr. Power Energy Syst. 29, 76–82 (2007)

    Article  Google Scholar 

  40. W. Threevithayanon, N. Hoonchareon, Fault data synchronization using wavelet for improving two-terminal fault location algorithm. Power and Energy Engineering Conference (APPEEC), Asia-Pacific, pp. 1–4 (2010)

    Google Scholar 

  41. M.K. Hoi, Traveling wave fault locator experience on CLP power transmission network. CEPSI Conference, Fukuoka, Japan, T2-B-8 (2002)

    Google Scholar 

  42. C.A. Nucci, M. Polone, L. Peretto, A. Borghetti, S. Corsi, R. Tinarelli, On the use of continues-wavelet transform for fault location in distribution power systems. Electr. Power Energy Syst. 28, 608–617 (2006)

    Article  Google Scholar 

  43. M. Paolone, A. Borghetti, M. Bosetti, A. Abur, Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation. International Conference on Power Systems Transients (IPST), p. 313 (2009)

    Google Scholar 

  44. M. Di Silvestro, C.A. Nucci, A. Borghetti, M. Bosetti, M. Paolone, Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients. International Conference on Power Systems Transients (IPST), p. 22 (2007)

    Google Scholar 

  45. A.S. Bretas, R.H. Salim, K.R. Caino de Oliveira, Fault detection in primary distribution systems using wavelets. International Conference on Power Systems Transients (IPST) (2007)

    Google Scholar 

  46. E.M. Aboul-Zahab, S.M. Saleh, D.K. Ibrahim, E.S.T. Eldin, Real time evaluation of DWT-based high impedance fault detectioin in EHV transmision. Electr. Power Syst. Res. 80, 907–914 (2010)

    Google Scholar 

  47. M. Gilany, D.K. Ibrahim, E.S.T. Eldin, Traveling-wave-based fault-location scheme for multiend-aged underground cable system. IEEE Trans. Power Delivery 22(1), 82–89 (2007)

    Google Scholar 

  48. M. Paolone, A. Borghetti, C.A. Nucci, An automatic system to locate phase-to-ground faults in medium voltage cable networks based on the wavelet analysis of high-frequency signals, in PowerTech 2011, IEEE, Trondheim, pp. 1–7 (2011)

    Google Scholar 

  49. A. Borghetti, M. Bosetti, C.A. Nucci, M. Paolone, A. Abur, Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: theory and experimental validation. IEEE Trans. Power Delivery 25(4), 3139–3146 (2010)

    Article  Google Scholar 

  50. A. Borghetti, M. Bosetti, M. Di Silvestro, C.A. Nucci, M. Paolone, Continuous-wavelet transform for fault location in distribution power networks: definition of mother wavelets inferred from fault originated transients. IEEE Trans. Power Systems 23(2), 380–388 (2008)

    Article  Google Scholar 

  51. F.Z. He, S.L. Ling, Z. Bo, Fault detection and classification in EHV transmission line based on wavelet singular entropy. IEEE Trans. Power Delivery 25(4), 2156–2163 (2010)

    Article  Google Scholar 

  52. S. Lin, Z.Y. He, X.P. Li, Q.Q. Qian, Travelling wave time-frequency characteristic-based fault location method for transmission lines. IET Gener. Transm. Distrib. 6(8), 764–772 (2012)

    Article  Google Scholar 

  53. F.B. Costa, B.A. Souza, N.S.D. Brito, Effects of the fault inception angle in fault-induced transients. IET Gener. Trans. Distr. 6(5), 463–471 (2012)

    Google Scholar 

  54. M. Korkali, A. Abur, Fault location in meshed power networks using synchronized measurements. North American Power Symposium (NAPS) 2010, 1–6 (2010)

    Google Scholar 

  55. F.H. Magnago, A. Abur, Fault location using wavelet. IEEE Trans. Power Delivery, 13(4), 1475–1480 (1998)

    Google Scholar 

  56. S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. L. Ke, W. Houjun, A novel wavelet transform modulus maxima based method of measuring lipschitz exponent, in International Conference on Communications, Circuits and Systems, ICCCAS 2007, pp. 628–632 (2007)

    Google Scholar 

  58. N. Nagaoka, A. Ametani, Transient calculations on crossbonded cables. IEEE Trans. Power Apparatus Syst. PAS-102(4), 779–787 (1983)

    Google Scholar 

  59. Y. Itoh, N. Nagaoka, A. Ametani, Transient analysis of a crossbonded cable system underneath a bridge. IEEE Trans. Power Delivery 5(2), 527–532 (1990)

    Article  Google Scholar 

  60. U.S. Gudmundsdottir, B. Gustavsen, C.L. Bak, W. Wiechowski, Field test and simulation of a 400-kV cross-bonded cable system. IEEE Trans. Power Delivery 26(3), 1403–1410 (2011)

    Google Scholar 

  61. U.S. Gudmundsdottir, Modeling of long High Voltage AC cables in Transmission Systems. (Energinet.dk, 2nd edn, 2010) ISBN 978-87-90707-73-6

    Google Scholar 

  62. O.A.S. Youssef, Combined fuzzy-logic wavelet-based fault classification technique for power system relaying. IEEE Trans. Power Delivery 19(2), 582–589 (2004)

    Google Scholar 

  63. Z. Chen, J.-C. Maun, Artificial neural network approach to single-ended fault locator for transmission lines. IEEE Trans. Power Systems 15(1), 370–375 (2000)

    Google Scholar 

  64. M. Joorabian, S.M.A. Taleghani, S. Asl, R.K. Aggarwal, Accurate fault locator for EHV transmission lines based on radial basis function neural networks. Electr. Power Syst. Res. 71(3), 195–202 (2004)

    Article  Google Scholar 

  65. J. Gracia, A.J. Mazon, I. Zamora, Best ANN structures for fault location in single-and double-circuit transmission lines. IEEE Trans. Power Delivery 20(4), 2389–2395 (2005)

    Google Scholar 

  66. S. Osowski, R. Salat, Fault location in transmission line using hybrid neural network. Int. J. Comput. Math. Electr. Electron. Eng. 21, 18–30 (2002)

    Article  Google Scholar 

  67. L.S. Martins, J.F. Martins, V.F. Pires, C.M. Alegria, The application of neural networks and Clarke–Concordia transformation in fault location on distribution power systems, vol 3, pp. 2091–2095 (October 2002)

    Google Scholar 

  68. F. Chunju, K.K. Li, W.L. Chan, Y. Weiyong, Z. Zhaoning, Application of wavelet fuzzy neural network in locating single line to ground fault (SLG) in distribution lines. Int. J. Electr. Power Energy Syst. 29(6), 497–503 (2007)

    Article  Google Scholar 

  69. J. Sadeh, H. Afradi, A new and accurate fault location algorithm for combined transmission lines using adaptive network-based fuzzy inference system. Electr. Power Syst. Res. 79(11), 1538–1545 (2009)

    Article  Google Scholar 

  70. C.K. Jung, K.H. Kim, J.B. Lee, Bernd Klöckl, Wavelet and neuro-fuzzy based fault location for combined transmission systems. Int. J. Electr. Power Energy Syst. 29(6), 445–454 (2007)

    Google Scholar 

  71. P.K. Dash, A.K. Pradhan, G. Panda, A novel fuzzy neural network based distance relaying scheme. IEEE Trans. Power Delivery 15(3), 902–907 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Flytkjær Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, C.F. (2014). Fault in Transmission Cables and Current Fault Location Methods. In: Online Location of Faults on AC Cables in Underground Transmission Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05398-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05398-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05397-4

  • Online ISBN: 978-3-319-05398-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics