Skip to main content

Structure and Evolution of Online Social Networks

  • Chapter
Social Networking

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 65))

Abstract

Social networks are complex systems which evolve through interactions among a growing set of actors or users. A popular methodology of studying such systems is to use tools of complex network theory to analyze the evolution of the networks, and the topological properties that emerge through the process of evolution. With the exponential rise in popularity of Online Social Networks (OSNs) in recent years, there have been a number of studies which measure the topological properties of such networks. Several network evolution models have also been proposed to explain the emergence of these properties, such as those based on preferential attachment, heterogeneity of nodes, and triadic closure. We survey some of these studies in this chapter. We also describe in detail a preferential attachment based model to analyze the evolution of OSNs in the presence of restrictions on node-degree that are presently being imposed in all popular OSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics 6(3), 403–412 (2012)

    Article  Google Scholar 

  2. Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 835–844 (2007)

    Google Scholar 

  3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allamanis, M., Scellato, S., Mascolo, C.: Evolution of a location-based online social network: analysis and models. In: Proceedings of ACM Internet Measurement Conference (IMC) (2012)

    Google Scholar 

  5. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. arXiv:1111.4570 [cs.SI] (2012)

    Google Scholar 

  6. Bagrow, J.P., Brockmann, D.: Natural emergence of clusters and bursts in network evolution. Phys. Rev. X 3, 021016 (2013)

    Google Scholar 

  7. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for Youtube: taking random walks through the view graph. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 895–904 (2008)

    Google Scholar 

  8. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ben-Naim, E., Krapivsky, P.L.: Popularity-driven networking. Europhysics Letters 97(4), 48003 (2012)

    Article  Google Scholar 

  10. Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks. Europhysics Letters 54(4), 436 (2001)

    Article  Google Scholar 

  11. Bonato, A., Hadi, N., Horn, P., Pralat, P., Want, C.: Models of on-line social networks. Internet Mathematics 6, 285–313 (2011)

    Article  Google Scholar 

  12. Bonato, A., Janssen, J., Pralat, P.: A geometric model for on-line social networks. In: Proceedings of Workshop on Online Social Networks (WOSN) (June 2010)

    Google Scholar 

  13. Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters 89, 258702 (2002)

    Article  Google Scholar 

  14. Catanzaro, M., Caldarelli, G., Pietronero, L.: Assortative model for social networks. Physical Review E 70, 037101 (2004)

    Google Scholar 

  15. Catone, J.: Twitter’s Follow Limit Makes Twitter Less Useful (August 2008), http://www.sitepoint.com/twitter-follow-limit-makes-twitter-less-useful/

  16. Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl, M., Gerd, S.: Network properties of folksonomies. AI Communications 20, 245–262 (2007)

    MathSciNet  Google Scholar 

  17. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in Twitter: the million follower fallacy. In: Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM) (May 2010)

    Google Scholar 

  18. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. de Solla, P.: Networks of scientific papers. Science 149(3683), 510–515 (1965)

    Article  Google Scholar 

  20. Erdös, P., Rényi, A.: On random graphs, I. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  21. Erdos, P., Renyi, A.: On the strength of connectedness of a random graph. Acta Mathematica Hungarica 12, 261–267 (1961)

    Article  MathSciNet  Google Scholar 

  22. Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhysics Letters 73(4), 649 (2006)

    Article  MathSciNet  Google Scholar 

  23. Ferrara, E.: A large-scale community structure analysis in Facebook. arXiv:1106.2503 [cs.SI] (2012)

    Google Scholar 

  24. Ferrara, E., Fiumara, G.: Topological features of online social networks. Communications on Applied and Industrial Mathematics 2(2), 1–20 (2011)

    MathSciNet  Google Scholar 

  25. Twitter help center: Following rules and best practices, http://support.twitter.com/forums/10711/entries/68916

  26. Twitter blog: Making progress on spam (August 2008), http://blog.twitter.com/2008/08/making-progress-on-spam.html

  27. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  28. Gaito, S., Zignani, M., Rossi, G.P., Sala, A., Wang, X., Zheng, H., Zhao, B.Y.: On the bursty evolution of online social networks. arXiv:1203.6744 [cs.SI] (2012)

    Google Scholar 

  29. Ghosh, S., Srivastava, A., Ganguly, N.: Effects of a soft cut-off on node-degree in the Twitter social network. Computer Communications 35(7), 784–795 (2012)

    Article  Google Scholar 

  30. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of U.S.A (PNAS) 99, 7821 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hu, H., Wang, X.-F.: Disassortative mixing in online social networks. Europhysics Letters 86(1), 18003 (2009)

    Article  Google Scholar 

  32. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday 14(1) (January 2009)

    Google Scholar 

  33. Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of Workshop on Web Mining and Social Network Analysis (WebKDD / SNA-KDD), pp. 56–65 (2007)

    Google Scholar 

  34. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Physical Review E 64, 046132 (2001)

    Google Scholar 

  35. Krapivsky, P.L., Rodgers, G.J., Redner, S.: Degree distributions of growing networks. Physical Review Letters 86(23), 5401–5404 (2001)

    Article  Google Scholar 

  36. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data mining (SIGKDD), pp. 611–617 (2006)

    Google Scholar 

  37. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In. In: Proceedings of ACM International Conference on World Wide Web (WWW), pp. 591–600 (2010)

    Google Scholar 

  38. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 462–470 (2008)

    Google Scholar 

  39. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 177–187. ACM (2005)

    Google Scholar 

  40. Medo, M., Cimini, G., Gualdi, S.: Temporal effects in the growth of networks. Physical Review Letters 107(23), 238701 (2011)

    Article  Google Scholar 

  41. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the Flickr social network. In: Proceedings of Workshop on Online Social Networks (WOSN), pp. 25–30 (2008)

    Google Scholar 

  42. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of ACM SIGCOMM Conference on Internet Measurement (IMC), pp. 29–42 (2007)

    Google Scholar 

  43. Mislove, A.E.: Online social networks: measurement, analysis, and applications to distributed information systems. PhD thesis, Rice University (April 2009)

    Google Scholar 

  44. Mukherjee, A., Choudhury, M., Ganguly, N.: Understanding how both the partitions of a bipartite network affect its one-mode projection. Physica A: Statistical Mechanics and its Applications 390(20), 3602–3607 (2011)

    Article  Google Scholar 

  45. Nacher, J.C., Akutsu, T.: On the degree distribution of projected networks mapped from bipartite networks. Physica A: Statistical Mechanics and its Applications 390(23-24), 4636–4651 (2011)

    Article  MathSciNet  Google Scholar 

  46. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Physical Review E 64, 025102 (2001)

    Google Scholar 

  47. Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89(20), 208701 (2002)

    Article  Google Scholar 

  48. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Newman, M.E.J.: Random graphs with clustering. Physical Review Letters 103, 058701 (2009)

    Google Scholar 

  50. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Physical Review E 68(3), 036122 (2003)

    Google Scholar 

  51. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proceedings of the National Academy of Sciences of U.S.A (PNAS) 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  52. Podobnik, B., Horvatic, D., Dickison, M., Stanley, H.E.: Preferential attachment in the interaction between dynamically generated interdependent networks. arXiv:1209.2817 [physics.soc-ph] (2012)

    Google Scholar 

  53. Ramasco, J.J., Dorogovtsev, S.N., Pastor-Satorras, R.: Self-organization of collaboration networks. Physical Review E 70(3), 036106 (2004)

    Google Scholar 

  54. Romero, D.M., Kleinberg, J.M.: The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter. In: Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM) (May 2010)

    Google Scholar 

  55. Saramaki, J., Kaski, K.: Scale-free networks generated by random walkers. Physica A: Statistical Mechanics and its Applications 341, 80–86 (2004)

    Article  MathSciNet  Google Scholar 

  56. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)

    MATH  MathSciNet  Google Scholar 

  57. Singer, P., Wagner, C., Strohmaier, M.: Understanding co-evolution of social and content networks on Twitter. In: Proceedings of Workshop on Making Sense of Microposts (with ACM WWW) (2012)

    Google Scholar 

  58. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)

    Article  Google Scholar 

  59. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social graph. arXiv:1111.4503 [cs.SI] (2011)

    Google Scholar 

  60. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptarshi Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, S., Ganguly, N. (2014). Structure and Evolution of Online Social Networks. In: Panda, M., Dehuri, S., Wang, GN. (eds) Social Networking. Intelligent Systems Reference Library, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-05164-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05164-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05163-5

  • Online ISBN: 978-3-319-05164-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics