Skip to main content

On the Relation between Redactable and Sanitizable Signature Schemes

  • Conference paper
Engineering Secure Software and Systems (ESSoS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8364))

Included in the following conference series:

Abstract

Malleable signature schemes (\(\mathcal MSS\)) enable a third party to alter signed data in a controlled way, maintaining a valid signature after an authorized change. Most well studied cryptographic constructions are (1) redactable signatures (\(\mathcal RSS\)), and (2) sanitizable signatures (\(\mathcal SSS\)). \(\mathcal RSS\)s allow the removal of blocks from a signed document, while \(\mathcal SSS\)s allow changing blocks to arbitrary strings. We rigorously prove that \(\mathcal RSS\)s are less expressive than \(\mathcal SSS\)s: no unforgeable \(\mathcal RSS\) can be transformed into an \(\mathcal SSS\). For the opposite direction we give a black-box transformation of a single \(\mathcal SSS\), with tightened security, into an \(\mathcal RSS\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096 (2011), http://eprint.iacr.org

  2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI, vol. 155, pp. 117–128. GI (2009)

    Google Scholar 

  10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-Interactive Public Accountability for Sanitizable Signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and Perfectly Unlinkable Sanitizable Signatures without Group Signatures. In: Agudo, I. (ed.) EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014)

    Google Scholar 

  13. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Cavoukian, A., Polonetsky, J., Wolf, C.: Smartprivacy for the smart grid: embedding privacy into the design of electricity conservation. Identity in the Information Society 3(2), 275–294 (2010)

    Article  Google Scholar 

  17. Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)

    Google Scholar 

  19. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17, 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: ASIACCS, pp. 353–362 (2008)

    Google Scholar 

  23. Hanser, C., Slamanig, D.: Blank digital signatures. In: AsiaCCS, pp. 95–106. ACM (2013)

    Google Scholar 

  24. Izu, T., Izumi, M., Kunihiro, N., Ohta, K.: Yet another sanitizable and deletable signatures. In: AINA, pp. 574–579 (2011)

    Google Scholar 

  25. Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and deletable signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 130–144. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Kundu, A., Bertino, E.: Structural Signatures for Tree Data Structures. In: Proc. of PVLDB 2008, New Zealand. ACM (2008)

    Google Scholar 

  29. Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT, pp. 609–620 (2010)

    Google Scholar 

  30. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Intl. J. of Inf. Sec., 1–28 (2013)

    Google Scholar 

  31. Lim, S., Lee, E., Park, C.-M.: A short redactable signature scheme using pairing. Sec. and Comm. Netw. 5(5), 523–534 (2012)

    Article  Google Scholar 

  32. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM, New York (2006)

    Google Scholar 

  33. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition Control. IEICE Transactions 88-A(1), 239–246 (2005)

    Article  Google Scholar 

  34. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.: Digital documents sanitizing problem. Technical report, IEICE (2003)

    Google Scholar 

  35. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP 2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature - Performance, Mixing Properties, and Revisiting the Property of Transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  37. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On Structural Signatures for Tree Data Structures. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  38. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  39. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-C. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  41. Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 80–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K. (2014). On the Relation between Redactable and Sanitizable Signature Schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds) Engineering Secure Software and Systems. ESSoS 2014. Lecture Notes in Computer Science, vol 8364. Springer, Cham. https://doi.org/10.1007/978-3-319-04897-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04897-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04896-3

  • Online ISBN: 978-3-319-04897-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics