Skip to main content

Receptor Tyrosine Kinases in Osteosarcoma: Not Just the Usual Suspects

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

Despite aggressive surgical and chemotherapy protocols, survival rates for osteosarcoma patients have not improved over the last 30 years. Therefore, novel therapeutic agents are needed. Receptor tyrosine kinases have emerged as targets for the development of new cancer therapies since their activation leads to enhanced proliferation, survival, and metastasis. In fact, aberrant expression and activation of RTKs have been associated with the progression of many cancers. Studies from our lab using phosphoproteomic screening identified RTKs that are activated and thus may contribute to the signaling within metastatic human osteosarcoma cells. Functional genomic screening using siRNA was performed to distinguish which of the activated RTKs contribute to in vitro phenotypes associated with metastatic potential (motility, invasion, colony formation, and cell growth). The resulting RTK hits were then validated using independent validation experiments. From these results, we identified four RTKs (Axl, EphB2, FGFR2, and Ret) that have not been previously studied in osteosarcoma and provide targets for the development of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    PubMed  CAS  Google Scholar 

  2. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    PubMed  CAS  Google Scholar 

  3. Chong PK, Lee H, Kong JW et al (2008) Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 8(21):4370–4382

    PubMed  CAS  Google Scholar 

  4. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4(5):361–370

    PubMed  CAS  Google Scholar 

  6. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3):275–282

    PubMed  CAS  Google Scholar 

  7. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19(2):117–123

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272(1):217–221

    PubMed  CAS  Google Scholar 

  9. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187

    PubMed  CAS  Google Scholar 

  10. Kim H, Gillis LC, Jarvis JD et al (2011) Tyrosine kinase chromosomal translocations mediate distinct and overlapping gene regulation events. BMC Cancer 11:528

    PubMed  PubMed Central  Google Scholar 

  11. Kurzrock R, Kantarjian HM, Druker BJ et al (2003) Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Annal Int Med 138(10):819–830

    CAS  Google Scholar 

  12. Rowley JD (1973) Chromosomal patterns in myelocytic leukemia. N Engl J Med 289(4):220–221

    PubMed  CAS  Google Scholar 

  13. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    PubMed  CAS  Google Scholar 

  14. Kim DW, Hwang JH, Suh JM et al (2003) RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol 17(7):1382–1394

    PubMed  CAS  Google Scholar 

  15. May WA, Lessnick SL, Braun BS et al (1993) The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13(12):7393–7398

    PubMed  CAS  PubMed Central  Google Scholar 

  16. De Vito C, Riggi N, Suva ML et al (2011) Let-7a is a direct EWS-FLI-1 target implicated in Ewing’s sarcoma development. PLoS One 6(8):e23592

    PubMed  PubMed Central  Google Scholar 

  17. Nishikawa R, Ji XD, Harmon RC et al (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 91(16):7727–7731

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129

    PubMed  CAS  Google Scholar 

  19. Zwick E, Bange J, Ullrich A (2002) Receptor tyrosine kinases as targets for anticancer drugs. Trend Mol Med 8(1):17–23

    CAS  Google Scholar 

  20. Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17(10):1183–1193

    PubMed  CAS  Google Scholar 

  21. Miyamoto S, Nakamura M, Yano K et al (2007) Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 98(5):685–691

    PubMed  CAS  Google Scholar 

  22. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312(5777):1175–1178

    PubMed  CAS  Google Scholar 

  23. Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303(5665):1800–1805

    PubMed  CAS  Google Scholar 

  24. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39

    PubMed  Google Scholar 

  25. Fabbro D, Cowan-Jacob SW, Mobitz H et al (2012) Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 795:1–34

    PubMed  CAS  Google Scholar 

  26. Adrian FJ, Ding Q, Sim T et al (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2(2):95–102

    PubMed  CAS  Google Scholar 

  27. Hudis CA (2007) Trastuzumab – Mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51

    PubMed  CAS  Google Scholar 

  28. Lambrechts D, Lenz HJ, de Haas S et al (2013) Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 31(9):1219–1230

    PubMed  CAS  Google Scholar 

  29. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    PubMed  CAS  Google Scholar 

  30. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578

    PubMed  CAS  Google Scholar 

  31. Sierra JR, Cepero V, Giordano S (2010) Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 9:75

    PubMed  PubMed Central  Google Scholar 

  32. Kobayashi S, Ji H, Yuza Y et al (2005) An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res 65(16):7096–7101

    PubMed  CAS  Google Scholar 

  33. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73

    PubMed  PubMed Central  Google Scholar 

  34. Burrow S, Andrulis IL, Pollak M et al (1998) Expression of insulin-like growth factor receptor, IGF-1, and IGF-2 in primary and metastatic osteosarcoma. J Surg Oncol 69(1):21–27

    PubMed  CAS  Google Scholar 

  35. Benini S, Baldini N, Manara MC et al (1999) Redundancy of autocrine loops in human osteosarcoma cells. Int J Cancer 80(4):581–588

    PubMed  CAS  Google Scholar 

  36. Hughes DP, Thomas DG, Giordano TJ et al (2006) Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition. Pediatr Blood Cancer 46(5):614–623

    PubMed  Google Scholar 

  37. Charity RM, Foukas AF, Deshmukh NS et al (2006) Vascular endothelial growth factor expression in osteosarcoma. Clin Orthop Relat Res 448:193–198

    PubMed  CAS  Google Scholar 

  38. Ferracini R, Di Renzo MF, Scotlandi K et al (1995) The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10(4):739–749

    PubMed  CAS  Google Scholar 

  39. Lee YH, Tokunaga T, Oshika Y et al (1999) Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. Eur J Cancer 35(7):1089–1093

    PubMed  CAS  Google Scholar 

  40. Sulzbacher I, Birner P, Trieb K et al (2003) Expression of platelet-derived growth factor-AA is associated with tumor progression in osteosarcoma. Mod Pathol 16(1):66–71

    PubMed  Google Scholar 

  41. Fukuda T, Ichimura E, Shinozaki T et al (1998) Coexpression of HGF and c-Met/HGF receptor in human bone and soft tissue tumors. Pathol Int 48(10):757–762

    PubMed  CAS  Google Scholar 

  42. Gorlick R, Huvos AG, Heller G et al (1999) Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17(9):2781–2788

    PubMed  CAS  Google Scholar 

  43. Handa A, Tokunaga T, Tsuchida T et al (2000) Neuropilin-2 expression affects the increased vascularization and is a prognostic factor in osteosarcoma. Int J Oncol 17(2):291–295

    PubMed  CAS  Google Scholar 

  44. Kaya M, Wada T, Kawaguchi S et al (2002) Increased pre-therapeutic serum vascular endothelial growth factor in patients with early clinical relapse of osteosarcoma. Br J Cancer 86(6):864–869

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Oda Y, Yamamoto H, Tamiya S et al (2006) CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis. Mod Pathol 19(5):738–745

    PubMed  CAS  Google Scholar 

  46. Onda M, Matsuda S, Higaki S et al (1996) ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer 77(1):71–78

    PubMed  CAS  Google Scholar 

  47. Luu HH, Kang Q, Park JK et al (2005) An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Meta 22(4):319–329

    Google Scholar 

  48. Jia SF, Worth LL, Kleinerman ES (1999) A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Meta 17(6):501–506

    CAS  Google Scholar 

  49. Rettew AN, Young ED, Lev DC et al (2012) Multiple receptor tyrosine kinases promote the in vitro phenotype of metastatic human osteosarcoma cell lines. Oncogenesis 1(e34):1–9

    Google Scholar 

  50. Kolb EA, Gorlick R (2009) Development of IGF-IR Inhibitors in Pediatric Sarcomas. Curr Oncol Rep 11(4):307–313

    PubMed  CAS  Google Scholar 

  51. Larsson O, Girnita A, Girnita L (2005) Role of insulin-like growth factor 1 receptor signalling in cancer. Br J Cancer 92(12):2097–2101

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Kappel CC, Velez-Yanguas MC, Hirschfeld S et al (1994) Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth. Cancer Res 54(10):2803–2807

    PubMed  CAS  Google Scholar 

  53. Wang YH, Wang ZX, Qiu Y et al (2009) Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells. Mol Cell Biochem 327(1–2):257–266

    PubMed  CAS  Google Scholar 

  54. Dong J, Demarest SJ, Sereno A et al (2010) Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther 9(9):2593–2604

    PubMed  CAS  Google Scholar 

  55. Kolb EA, Gorlick R, Houghton PJ et al (2008) Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 50(6):1190–1197

    PubMed  Google Scholar 

  56. Kolb EA, Kamara D, Zhang W et al (2010) R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr Blood Cancer 55(1):67–75

    PubMed  Google Scholar 

  57. Wang Y, Lipari P, Wang X et al (2010) A fully human insulin-like growth factor-I receptor antibody SCH 717454 (Robatumumab) has antitumor activity as a single agent and in combination with cytotoxics in pediatric tumor xenografts. Mol Cancer Ther 9(2):410–418

    PubMed  CAS  Google Scholar 

  58. Pollak M, Sem AW, Richard M et al (1992) Inhibition of metastatic behavior of murine osteosarcoma by hypophysectomy. J Natl Cancer Inst 84(12):966–971

    PubMed  CAS  Google Scholar 

  59. Messerschmitt PJ, Rettew AN, Brookover RE et al (2008) Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro. Clin Orthop Relat Res 466(9):2168–2175

    PubMed  PubMed Central  Google Scholar 

  60. Bagatell R, Herzog CE, Trippett TM et al (2011) Pharmacokinetically guided phase 1 trial of the IGF-1 receptor antagonist RG1507 in children with recurrent or refractory solid tumors. Clin Cancer Res 17(3):611–619

    PubMed  CAS  Google Scholar 

  61. Kolb EA, Gorlick R, Lock R et al (2011) Initial testing (stage 1) of the IGF-1 receptor inhibitor BMS-754807 by the pediatric preclinical testing program. Pediatr Blood Cancer 56(4):595–603

    PubMed  Google Scholar 

  62. Kuijjer ML, Peterse EF, van den Akker BE et al (2013) IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. BMC Cancer 13:245

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Desai J, Solomon J, Davis ID et al (2010) Phase I dose-escalation study of daily BMS-754807, an oral, dual IGF-1R/insulin receptor (IR) inhibitor in subjects with solid tumors. In: ASCO Annual Meeting Proceedings, 2010, p 3104

    Google Scholar 

  64. Houghton PJ, Morton CL, Gorlick R et al (2010) Initial testing of a monoclonal antibody (IMC-A12) against IGF-1R by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 54(7):921–926

    PubMed  PubMed Central  Google Scholar 

  65. Linger RM, Keating AK, Earp HS et al (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 100:35–83

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Varnum BC, Young C, Elliott G et al (1995) Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373(6515):623–626

    PubMed  CAS  Google Scholar 

  67. Verma A, Warner SL, Vankayalapati H et al (2011) Targeting Axl and Mer kinases in cancer. Mol Cancer Ther 10(10):1763–1773

    PubMed  CAS  Google Scholar 

  68. Bellosta P, Costa M, Lin DA et al (1995) The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol Cell Biol 15(2):614–625

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Korshunov VA (2012) Axl-dependent signalling: a clinical update. Clin Sci 122(8):361–368

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Linger RM, Keating AK, Earp HS et al (2010) Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Exp Opin Therap Targ 14(10):1073–1090

    CAS  Google Scholar 

  71. Rankin EB, Fuh KC, Taylor TE et al (2010) AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 70(19):7570–7579

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Holland SJ, Pan A, Franci C et al (2010) R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res 70(4):1544–1554

    PubMed  CAS  Google Scholar 

  73. Linger RM, Cohen RA, Cummings CT et al (2012) Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32(29):3420–3431

    Google Scholar 

  74. Liu L, Greger J, Shi H et al (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 69(17):6871–6878

    PubMed  CAS  Google Scholar 

  75. Hong J, Peng D, Chen Z et al (2013) ABL regulation by AXL promotes cisplatin resistance in esophageal cancer. Cancer Res 73(1):331–340

    PubMed  CAS  Google Scholar 

  76. Keating AK, Kim GK, Jones AE et al (2010) Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther 9(5):1298–1307

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Huang F, Hurlburt W, Greer A et al (2010) Differential mechanisms of acquired resistance to insulin-like growth factor-i receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Res 70(18):7221–7231

    PubMed  CAS  Google Scholar 

  78. Zhang Z, Lee JC, Lin L et al (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44(8):852–860

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Rochlitz C, Lohri A, Bacchi M et al (1999) Axl expression is associated with adverse prognosis and with expression of Bcl-2 and CD34 in de novo acute myeloid leukemia (AML): results from a multicenter trial of the Swiss Group for Clinical Cancer Research (SAKK). Leukemia 13(9):1352–1358

    PubMed  CAS  Google Scholar 

  80. Koorstra JB, Karikari CA, Feldmann G et al (2009) The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther 8(7):618–626

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Shieh YS, Lai CY, Kao YR et al (2005) Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia 7(12):1058–1064

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Gjerdrum C, Tiron C, Hoiby T et al (2010) Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A 107(3):1124–1129

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Fernebro J, Francis P, Eden P et al (2006) Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 118(5):1165–1172

    PubMed  CAS  Google Scholar 

  84. Peng T, Zhang P, Liu J et al (2011) An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors. Lab Invest 91(3):392–403

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Hoffman A, Ghadimi MP, Demicco EG et al (2013) Localized and metastatic myxoid/round cell liposarcoma: clinical and molecular observations. Cancer 119(10):1868–1877

    PubMed  CAS  Google Scholar 

  87. Nakano T, Tani M, Ishibashi Y et al (2003) Biological properties and gene expression associated with metastatic potential of human osteosarcoma. Clin Exp Meta 20(7):665–674

    CAS  Google Scholar 

  88. Zhang Y, Tang YJ, Man Y et al (2013) Knockdown of AXL receptor tyrosine kinase in osteosarcoma cells leads to decreased proliferation and increased apoptosis. Int J Immunopathol Pharmacol 26(1):179–188

    PubMed  CAS  Google Scholar 

  89. Choy E, Hornicek F, MacConaill L et al (2012) High-throughput genotyping in osteosarcoma identifies multiple mutations in phosphoinositide-3-kinase and other oncogenes. Cancer 118(11):2905–2914

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Seo JS, Ju YS, Lee WC et al (2012) The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 22(11):2109–2119

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Bai Y, Li J, Fang B et al (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 72(10):2501–2511

    PubMed  CAS  Google Scholar 

  92. Han J, Tian R, Yong B et al (2013) Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients. Biochem Biophys Res Commun 435(3):493–500

    PubMed  CAS  Google Scholar 

  93. Alvarez H, Montgomery EA, Karikari C et al (2010) The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther 10(10):1009–1018

    CAS  PubMed Central  Google Scholar 

  94. Cerchia L, Esposito CL, Camorani S et al (2012) Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther 20(12):2291–2303

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Barco R, Hunt LB, Frump AL et al (2007) The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Mol Biol Cell 18(10):4003–4012

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15(6):419–433

    PubMed  CAS  Google Scholar 

  98. Mao W, Luis E, Ross S et al (2004) EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 64(3):781–788

    PubMed  CAS  Google Scholar 

  99. Fritsche-Guenther R, Noske A, Ungethum U et al (2010) De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway. Histopathology 57(6):836–850

    PubMed  Google Scholar 

  100. Varelias A, Koblar SA, Cowled PA et al (2002) Human osteosarcoma expresses specific ephrin profiles: implications for tumorigenicity and prognosis. Cancer 95(4):862–869

    PubMed  Google Scholar 

  101. Koolpe M, Burgess R, Dail M et al (2005) EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 280(17):17301–17311

    PubMed  CAS  Google Scholar 

  102. Noberini R, Lamberto I, Pasquale EB (2012) Targeting Eph receptors with peptides and small molecules: progress and challenges. Semin Cell Dev Biol 23(1):51–57

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Hingorani P, Zhang W, Gorlick R et al (2009) Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin Cancer Res 15(10):3416–3422

    PubMed  CAS  Google Scholar 

  104. Kelleher FC, O’Sullivan H, Smyth E et al (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34(10):2198–2205

    PubMed  CAS  Google Scholar 

  105. Mirabello L, Yu K, Berndt SI et al (2011) A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer 11(1):209

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Sadikovic B, Yoshimoto M, Chilton-MacNeill S et al (2009) Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet 18(11):1962–1975

    PubMed  CAS  Google Scholar 

  107. Entz-Werle N, Lavaux T, Metzger N et al (2007) Involvement of MET/TWIST/APC combination or the potential role of ossification factors in pediatric high-grade osteosarcoma oncogenesis. Neoplasia 9(8):678–688

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65(20):9226–9235

    PubMed  CAS  Google Scholar 

  109. Henderson SR, Guiliano D, Presneau N et al (2005) A molecular map of mesenchymal tumors. Gen Biol 6(9):R76

    Google Scholar 

  110. Datsis GA, Berdiaki A, Nikitovic D et al (2011) Parathyroid hormone affects the fibroblast growth factor-proteoglycan signaling axis to regulate osteosarcoma cell migration. FEBS J 278(19):3782–3792

    PubMed  CAS  Google Scholar 

  111. Singh D, Chan JM, Zoppoli P et al (2012) Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337(6099):1231–1235

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Crose LE, Etheridge KT, Chen C et al (2012) FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clin Cancer Res 18(14):3780–3790

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Terai H, Soejima K, Yasuda H et al (2013) Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res 11(7):759–767

    PubMed  CAS  Google Scholar 

  114. Oliveras-Ferraros C, Cufi S, Queralt B et al (2012) Cross-suppression of EGFR ligands amphiregulin and epiregulin and de-repression of FGFR3 signalling contribute to cetuximab resistance in wild-type KRAS tumour cells. Br J Cancer 106(8):1406–1414

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Guagnano V, Kauffmann A, Wohrle S et al (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2(12):1118–1133

    PubMed  CAS  Google Scholar 

  116. Grigoriadis A, Patino-Garcia A, Zandueta C et al (2010) The role of FGFR signaling in osteosarcoma progression and metastasis. In: 16th annual meeting of the Connective Tissue Oncology Society, Paris, France, 2010, pp 155–156

    Google Scholar 

  117. Glen H, Mason S, Patel H et al (2011) E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer 11:309

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endoc Pathol 13(1):3–16

    CAS  Google Scholar 

  119. Cockburn JG, Richardson DS, Gujral TS et al (2010) RET-mediated cell adhesion and migration require multiple integrin subunits. J Clin Endocrinol Metab 95(11):E342–E346

    PubMed  Google Scholar 

  120. Gil Z, Cavel O, Kelly K et al (2010) Paracrine regulation of pancreatic cancer cell invasion by peripheral nerves. J Natl Cancer Inst 102(2):107–118

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Tang JZ, Kong XJ, Kang J et al (2010) Artemin-stimulated progression of human non-small cell lung carcinoma is mediated by BCL2. Mol Cancer Ther 9(6):1697–1708

    PubMed  CAS  Google Scholar 

  122. Cheng H, Dodge J, Mehl E et al (2009) Validation of immature adipogenic status and identification of prognostic biomarkers in myxoid liposarcoma using tissue microarrays. Hum Pathol 40(9):1244–1251

    PubMed  CAS  Google Scholar 

  123. Wolfesberger B, Tonar Z, Gerner W et al (2010) The tyrosine kinase inhibitor sorafenib decreases cell number and induces apoptosis in a canine osteosarcoma cell line. Res Vet Sci 88(1):94–100

    PubMed  CAS  Google Scholar 

  124. Pignochino Y, Grignani G, Cavalloni G et al (2009) Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer 8:118

    PubMed  PubMed Central  Google Scholar 

  125. Pignochino Y, Dell’Aglio C, Basirico M et al (2013) The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res 19(8):2117–2131

    PubMed  CAS  Google Scholar 

  126. Mross K, Frost A, Steinbild S et al (2012) A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18(9):2658–2667

    PubMed  CAS  Google Scholar 

  127. Grignani G, Palmerini E, Dileo P et al (2012) A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 23(2):508–516

    PubMed  CAS  Google Scholar 

  128. Coltella N, Manara MC, Cerisano V et al (2003) Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB J 17(9):1162–1164

    PubMed  CAS  Google Scholar 

  129. Sampson ER, Martin BA, Morris AE et al (2011) The orally bioavailable met inhibitor PF-2341066 inhibits osteosarcoma growth and osteolysis/matrix production in a xenograft model. J Bone Miner Res 26(6):1283–1294

    PubMed  CAS  Google Scholar 

  130. Patane S, Avnet S, Coltella N et al (2006) MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66(9):4750–4757

    PubMed  CAS  Google Scholar 

  131. Cantiani L, Manara MC, Zucchini C et al (2007) Cavelolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cancer Res 67(16):7675–7685

    PubMed  CAS  Google Scholar 

  132. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    PubMed  CAS  Google Scholar 

  133. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945–D950

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Stommel JM, Kimmelman AC, Ying H et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848):287–290

    PubMed  CAS  Google Scholar 

  135. Yu L, Saile K, Swartz CD et al (2008) Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol Med 14(5–6):264–275

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Davis LE, Hofmann NE, Li G et al (2013) A case study of personalized therapy for osteosarcoma. Pediatr Blood Cancer 60(8):1313–1319

    PubMed  Google Scholar 

  137. Xu AM, Huang PH (2010) Receptor tyrosine kinase coactivation networks in cancer. Cancer Res 70(10):3857–3860

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Greenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rettew, A.N., Getty, P.J., Greenfield, E.M. (2014). Receptor Tyrosine Kinases in Osteosarcoma: Not Just the Usual Suspects. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_3

Download citation

Publish with us

Policies and ethics