Skip to main content

Natural Killer Cells for Osteosarcoma

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that have the ability to recognize malignant cells through detection of a variety of cell-surface indicators of stress and danger. Once activated through such recognition, NK cells release cytokines and induce target cell lysis through a variety of mechanisms. NK cells are increasingly recognized as important mediators of other immunotherapeutic modalities, including cytokines, antibodies, immunomodulators, and stem cell transplantation. Adoptive immunotherapies with NK cells are being tested in early-stage clinical trials, and recent advances in manipulating their number and function have caused a renewed emphasis on this cancer-fighting cell. In this chapter we address the evidence for NK cell recognition of osteosarcoma in vitro and in vivo, discuss new therapies that are directly or indirectly dependent on NK cell function, and describe potential approaches for manipulating NK cell number and function to enhance therapy against osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580. doi:10.1038/nri2604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  3. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223. doi:10.1146/annurev.immunol.19.1.197, 19/1/197 [pii]

    Article  PubMed  CAS  Google Scholar 

  4. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89(2):216–224. doi:10.1038/icb.2010.78

    Article  PubMed  Google Scholar 

  5. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763

    Article  PubMed  CAS  Google Scholar 

  6. McQueen KL, Dorighi KM, Guethlein LA, Wong R, Sanjanwala B, Parham P (2007) Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum Immunol 68(5):309–323. doi:10.1016/j.humimm.2007.01.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  PubMed  CAS  Google Scholar 

  8. Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20(3):123–137. doi:10.1016/j.blre.2005.10.001, S0268-960X(05)00055-X [pii]

    Article  PubMed  CAS  Google Scholar 

  9. Browne KA, Blink E, Sutton VR, Froelich CJ, Jans DA, Trapani JA (1999) Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol Cell Biol 19(12):8604–8615

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188(12):2375–2380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163(4):1906–1913

    PubMed  CAS  Google Scholar 

  12. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193(6):661–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214(2):194–200. doi:10.1006/cimm.2001.1896

    Article  PubMed  CAS  Google Scholar 

  14. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861. doi:10.1038/nrc928

    Article  PubMed  CAS  Google Scholar 

  15. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356(9244):1795–1799. doi:10.1016/S0140-6736(00)03231-1, S0140-6736(00)03231-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  16. Markiewicz K, Zeman K, Kozar A, Golebiowska-Wawrzyniak M, Wozniak W (2012) Evaluation of selected parameters of cellular immunity in children with osteosarcoma at diagnosis. Med Wieku Rozwoj 16(3):212–221

    PubMed  Google Scholar 

  17. Moore C, Eslin D, Levy A, Roberson J, Giusti V, Sutphin R (2010) Prognostic significance of early lymphocyte recovery in pediatric osteosarcoma. Pediatr Blood Cancer 55(6):1096–1102. doi:10.1002/pbc.22673

    Article  PubMed  Google Scholar 

  18. Luksch R, Perotti D, Cefalo G, Gambacorti Passerini C, Massimino M, Spreafico F, Casanova M, Ferrari A, Terenziani M, Polastri D, Gambirasio F, Podda M, Bozzi F, Ravagnani F, Parmiani G, Fossati Bellani F (2003) Immunomodulation in a treatment program including pre- and post-operative interleukin-2 and chemotherapy for childhood osteosarcoma. Tumori 89(3):263–268

    PubMed  CAS  Google Scholar 

  19. Buddingh EP, Schilham MW, Ruslan SE, Berghuis D, Szuhai K, Suurmond J, Taminiau AH, Gelderblom H, Egeler RM, Serra M, Hogendoorn PC, Lankester AC (2011) Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother 60(4):575–586. doi:10.1007/s00262-010-0965-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Buddingh EP, Ruslan SE, Berghuis D, Gelderblom H, Anninga JK, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients. Cancer Immunol Immunother 61(6):941–947. doi:10.1007/s00262-012-1232-6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Delgado D, Webster DE, DeSantes KB, Durkin ET, Shaaban AF (2010) KIR receptor-ligand incompatibility predicts killing of osteosarcoma cell lines by allogeneic NK cells. Pediatr Blood Cancer 55(7):1300–1305. doi:10.1002/pbc.22665

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada T, Yamashita T, Sato N (2006) Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci 97(12):1374–1380. doi:10.1111/j.1349-7006.2006.00317.x, CAS317 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Chong AS, Boussy IA, Jiang XL, Lamas M, Graf LH Jr (1994) CD54/ICAM-1 is a costimulator of NK cell-mediated cytotoxicity. Cell Immunol 157(1):92–105. doi:10.1006/cimm.1994.1208, S0008-8749(84)71208-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  24. Tarozzi A, Mariani E, Facchini A (1995) In vitro cytolytic activity of human NK cells against osteosarcoma cell lines. Boll Soc Ital Biol Sper 71(7–8):221–226

    PubMed  CAS  Google Scholar 

  25. Mariani E, Tarozzi A, Meneghetti A, Cattini L, Facchini A (1998) TNF-alpha but not IL-1 and IL-6 modifies the susceptibility of human osteosarcoma cells to NK lysis. Int J Oncol 13(2):349–353

    PubMed  CAS  Google Scholar 

  26. Mariani E, Tarozzi A, Meneghetti A, Cattini L, Facchini A (1997) Human osteosarcoma cell susceptibility to natural killer cell lysis depends on CD54 and increases after TNF alpha incubation. FEBS Lett 406(1–2):83–88

    Article  PubMed  CAS  Google Scholar 

  27. Meneghetti A, Mariani E, Santi S, Riccio M, Cattini L, Paoletti S, Facchini A (1999) NK binding capacity and lytic activity depend on the expression of ICAM-1 on target bone tumours. Int J Oncol 15(5):909–914

    PubMed  CAS  Google Scholar 

  28. Zamai L, Zauli G, Bavelloni A, Marmiroli S, Cataldi A, Weber G, Vitale M (1995) Tiazofurin induces a down-modulation of ICAM-1 expression on K562 target cells impairing NK adhesion and killing. Cell Immunol 164(1):100–104. doi:10.1006/cimm.1995.1147, S0008-8749(85)71147-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  29. Xiao P, Xue L, Che LH, Peng JJ, Wu HX, Li Y, Qiao H (2008) Expression and roles of MICA in human osteosarcoma. Histopathology 52(5):640–642. doi:10.1111/j.1365-2559.2008.02989.x, HIS2989 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Zhu S, Denman CJ, Cobanoglu ZS, Kiany S, Lau CC, Gottschalk SM, Hughes DPM, Kleinerman ES, Lee DA (2013) The narrow-spectum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of sarcoma. Pharmacol Res (In Press)

    Google Scholar 

  31. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D (2010) Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 16(15):3901–3909. doi:10.1158/1078-0432.CCR-10-0735, 1078-0432.CCR-10-0735 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW, Lankester AC (2012) Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res 18(2):432–441. doi:10.1158/1078-0432.CCR-11-2277

    Article  PubMed  CAS  Google Scholar 

  33. Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27(45):5932–5943. doi:10.1038/onc.2008.267

    Article  PubMed  CAS  Google Scholar 

  34. Lu SM, Xiao P, Xue L, Che LH, Yang P, Li Y, Qiao H (2008) Prevalent expression of MHC class I chain-related molecule A in human osteosarcoma. Neoplasma 55(3):266–272

    PubMed  CAS  Google Scholar 

  35. Lee JA, Ko Y, Kim DH, Lim JS, Kong CB, Cho WH, Jeon DG, Lee SY, Koh JS (2012) Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma? Cancer Res Treat 44(3):202–209. doi:10.4143/crt.2012.44.3.202

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pahl JH, Ruslan SE, Kwappenberg KM, van Ostaijen-Ten Dam MM, van Tol MJ, Lankester AC, Schilham MW (2013) Antibody-dependent cell lysis by NK cells is preserved after sarcoma-induced inhibition of NK cell cytotoxicity. Cancer Immunol Immunother 62(7):1235–1247. doi:10.1007/s00262-013-1406-x

    Article  PubMed  CAS  Google Scholar 

  37. Mariani E, Meneghetti A, Tarozzi A, Cattini L, Facchini A (2000) Interleukin-12 induces efficient lysis of natural killer-sensitive and natural killer-resistant human osteosarcoma cells: the synergistic effect of interleukin-2. Scand J Immunol 51(6):618–625, sji737 [pii]

    Article  PubMed  CAS  Google Scholar 

  38. Guma SR, Lee DA, Yu L, Gordon N, Hughes D, Stewart J, Wang WL, Kleinerman ES (2013) Natural killer cell therapy and aerosol interleukin-2 for the treatment of osteosarcoma lung metastasis. Pediatr Blood Cancer. doi:10.1002/pbc.24801

    PubMed  Google Scholar 

  39. Liebau C, Merk H, Schmidt S, Roesel C, Karreman C, Prisack JB, Bojar H, Baltzer AW (2002) Interleukin-12 and interleukin-18 change ICAM-I expression, and enhance natural killer cell mediated cytolysis of human osteosarcoma cells. Cytokines Cell Mol Ther 7(4):135–142

    Article  PubMed  CAS  Google Scholar 

  40. Mills L, Huang G, Worth LL (2005) The role of interferon gamma and NK cells in the eradication of pulmonary osteosarcoma metastases by IL-12. AACR Meeting Abstracts 2005(1):1413c

    Google Scholar 

  41. Pelham JM, Gray JD, Flannery GR, Pimm MV, Baldwin RW (1983) Interferon-alpha conjugation to human osteogenic sarcoma monoclonal antibody 791 T/36. Cancer Immunol Immunother 15(3):210–216

    Article  PubMed  CAS  Google Scholar 

  42. Flannery GR, Pelham JM, Gray JD, Baldwin RW (1984) Immunomodulation: NK cells activated by interferon-conjugated monoclonal antibody against human osteosarcoma. Eur J Cancer Clin Oncol 20(6):791–798

    Article  PubMed  CAS  Google Scholar 

  43. Honorati MC, Neri S, Cattini L, Facchini A (2003) IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin Exp Immunol 133(3):344–349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gordon N, Koshkina NV, Jia SF, Khanna C, Mendoza A, Worth LL, Kleinerman ES (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15 Pt 1):4503–4510. doi:10.1158/1078-0432.CCR-07-0313

    Article  PubMed  CAS  Google Scholar 

  45. Kinoshita H, Yoshikawa H, Shiiki K, Hamada Y, Nakajima Y, Tasaka K (2000) Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regulating FLIP-L expression. Int J Cancer 88(6):986–991

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128(2):192–203. doi:10.1111/j.1365-2141.2004.05286.x, BJH5286 [pii]

    Article  PubMed  CAS  Google Scholar 

  47. Fujii H, Trudeau JD, Teachey DT, Fish JD, Grupp SA, Schultz KR, Reid GS (2007) In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 109(5):2008–2013. doi:10.1182/blood-2006-02-002055, blood-2006-02-002055 [pii]

    Article  PubMed  CAS  Google Scholar 

  48. Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, Jocham D, Ratliff TL, Bohle A (2001) NK cells are essential for effective BCG immunotherapy. Int J Cancer 92(5):697–702. doi:10.1002/1097-0215(20010601)92:5, <697::AID-IJC1245>3.0.CO;2-Z [pii]

    Article  PubMed  CAS  Google Scholar 

  49. Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K, Yamada N, Hata M, Nishioka T, Fukunaga S, Futani H, Okamura H, Terada N (2010) Sodium valproate, a histone deacetylase inhibitor, augments the expression of cell-surface NKG2D ligands, MICA/B, without increasing their soluble forms to enhance susceptibility of human osteosarcoma cells to NK cell-mediated cytotoxicity. Oncol Rep 24(6):1621–1627

    Article  PubMed  CAS  Google Scholar 

  50. Yamanegi K, Yamane J, Kobayashi K, Kato-Kogoe N, Ohyama H, Nakasho K, Yamada N, Hata M, Fukunaga S, Futani H, Okamura H, Terada N (2012) Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death. Int J Oncol 41(1):83–91. doi:10.3892/ijo.2012.1438

    PubMed  CAS  Google Scholar 

  51. Ogbomo H, Michaelis M, Kreuter J, Doerr HW, Cinatl J Jr (2007) Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 581(7):1317–1322

    Article  PubMed  CAS  Google Scholar 

  52. Kopp LM, Ray A, Denman CJ, Senyukov VS, Somanchi SS, Zhu S, Lee DA (2013) Decitabine has a biphasic effect on natural killer cell viability, phenotype, and function under proliferative conditions. Mol Immunol 54(3–4):296–301. doi:10.1016/j.molimm.2012.12.012

    Article  PubMed  CAS  Google Scholar 

  53. Rao-Bindal K, Zhou Z, Kleinerman ES (2012) MS-275 sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell Death Dis 3:e369. doi:10.1038/cddis.2012.101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Rao-Bindal K, Koshkina NV, Stewart J, Kleinerman ES (2013) The histone deacetylase inhibitor, MS-275 (Entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 13(4):411–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Berg SL, Cairo MS, Russell H, Ayello J, Ingle AM, Lau H, Chen N, Adamson PC, Blaney SM (2011) Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a Children’s Oncology Group Phase I Consortium report. J Clin Oncol 29(3):316–323. doi:10.1200/JCO.2010.30.8387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJ, Lee DA, Seeger RC (2013) Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 19(8):2132–2143. doi:10.1158/1078-0432.CCR-12-1243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Wu L, Parton A, Lu L, Adams M, Schafer P, Bartlett JB (2011) Lenalidomide enhances antibody-dependent cellular cytotoxicity of solid tumor cells in vitro: influence of host immune and tumor markers. Cancer Immunol Immunother 60(1):61–73. doi:10.1007/s00262-010-0919-9

    Article  PubMed  CAS  Google Scholar 

  58. Talmadge JE, Schneider M, Collins M, Phillips H, Herberman RB, Wiltrout RH (1985) Augmentation of NK cell activity in tissue specific sites by liposomes incorporating MTP-PE. J Immunol 135(2):1477–1483

    PubMed  CAS  Google Scholar 

  59. Kubista B, Trieb K, Blahovec H, Kotz R, Micksche M (2002) Hyperthermia increases the susceptibility of chondro- and osteosarcoma cells to natural killer cell-mediated lysis. Anticancer Res 22(2A):789–792

    PubMed  CAS  Google Scholar 

  60. Yamada N, Yamanegi K, Ohyama H, Hata M, Nakasho K, Futani H, Okamura H, Terada N (2012) Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 41(6):2005–2012. doi:10.3892/ijo.2012.1630

    PubMed  CAS  Google Scholar 

  61. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43(10):2756–2764. doi:10.1002/eji.201343448

    Article  PubMed  CAS  Google Scholar 

  62. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264. doi:10.1371/journal.pone.0030264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. doi:10.1016/j.jcyt.2013.06.017

    PubMed  Google Scholar 

  64. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D (2013) A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73(6):1777–1786. doi:10.1158/0008-5472.CAN-12-3558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Lee M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tarek, N., Lee, D.A. (2014). Natural Killer Cells for Osteosarcoma. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_19

Download citation

Publish with us

Policies and ethics