Skip to main content

Genetically Modified T-Cell Therapy for Osteosarcoma

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma, who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen presenting cells ex vivo is time consuming and often results in T-cell products with a low frequency of tumor-specific T cells. In addition, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models, however early phase clinical trials are in progress. In this chapter we review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed N, Brawley V, Diouf O et al (2012) T cells redirected against HER2 for the adoptive immunotherapy for HER2-positive osteosarcoma. Cancer Res 72(8 Suppl 1):Abstract

    Google Scholar 

  2. Ahmed N, Salsman VS, Yvon E et al (2009) Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther 17(10):1779–1787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118(1):294–305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Biller BJ, Guth A, Burton JH et al (2010) Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma. J Vet Intern Med 24(5):1118–1123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bollard CM, Aguilar L, Straathof KC et al (2004) Cytotoxic T lymphocyte therapy for epstein-barr virus+ Hodgkin’s disease. J Exp Med 200(12):1623–1633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bollard CM, Dotti G, Gottschalk S et al (2012) Administration of TGF-beta resistant tumor-specific CTL to patients with EBV-associated HL and NHL. Mol Ther 20(Suppl 1):S22

    Google Scholar 

  7. Bollard CM, Gottschalk S, Leen AM et al (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110(8):2838–2845

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bollard CM, Rossig C, Calonge MJ et al (2002) Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99(9):3179–3187

    Article  PubMed  CAS  Google Scholar 

  9. Bonini C, Brenner MK, Heslop HE et al (2011) Genetic modification of T cells. Biol Blood Marrow Transplant 17(1 Suppl):S15–S20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Brenner MK, Heslop HE (2010) Adoptive T cell therapy of cancer. Curr Opin Immunol 22(2):251–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brentjens RJ, Latouche JB, Santos E et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9(3):279–286

    Article  PubMed  CAS  Google Scholar 

  14. Carpenito C, Milone MC, Hassan R et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106(9):3360–3365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337

    Article  PubMed  Google Scholar 

  16. Cheung NK, Guo HF, Modak S et al (2003) Anti-idiotypic antibody facilitates scFv chimeric immune receptor gene transduction and clonal expansion of human lymphocytes for tumor therapy. Hybrid Hybridomics 22(4):209–218

    Article  PubMed  CAS  Google Scholar 

  17. Chinnasamy D, Tran E, Yu Z et al (2013) Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res 73(11):3371–3380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Chinnasamy D, Yu Z, Kerkar SP et al (2012) Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18(6):1672–1683

    Article  PubMed  CAS  Google Scholar 

  19. Chinnasamy D, Yu Z, Theoret MR et al (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120(11):3953–3968

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Chou J, Voong LN, Mortales CL et al (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35(2):131–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ciceri F, Bonini C, Stanghellini MT et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10(5):489–500

    Article  PubMed  Google Scholar 

  22. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1(4):482–497

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Cohen CJ, Li YF, El-Gamil M et al (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67(8):3898–3903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Comoli P, Pedrazzoli P, Maccario R et al (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol 23(35):8942–8949

    Article  PubMed  CAS  Google Scholar 

  25. Cooper LJ, Al Kadhimi Z, Serrano LM et al (2005) Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood 105(4):1622–1631

    Article  PubMed  CAS  Google Scholar 

  26. Craddock JA, Lu A, Bear A et al (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33(8):780–788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Cruz CR, Gerdemann U, Leen AM et al (2011) Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin Cancer Res 17(22):7058–7066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  29. Donia M, Fagone P, Nicoletti F et al (2012) BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 1(9):1476–1483

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dotti G, Savoldo B, Pule M et al (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105(12):4677–4684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Dudley ME, Yang JC, Sherry R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Eshhar Z, Waks T, Gross G et al (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90(2):720–724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Foster AE, Dotti G, Lu A et al (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31(5):500–505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Franchi A, Arganini L, Baroni G et al (1998) Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol 185(3):284–289

    Article  PubMed  CAS  Google Scholar 

  35. Fujita M, Zhu X, Sasaki K et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098

    Article  PubMed  CAS  Google Scholar 

  36. Gajewski TF, Meng Y, Blank C et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  PubMed  CAS  Google Scholar 

  37. Goff SL, Johnson LA, Black MA et al (2010) Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunol Immunother 59(10):1551–1560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Gorlick R, Huvos AG, Heller G et al (1999) Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 17(9):2781–2788

    PubMed  CAS  Google Scholar 

  39. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Google Scholar 

  40. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  PubMed  CAS  Google Scholar 

  41. Herrmann A, Kortylewski M, Kujawski M et al (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70(19):7455–7464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Heslop HE, Slobod KS, Pule MA et al (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hombach A, Heuser C, Sircar R et al (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 58(6):1116–1119

    PubMed  CAS  Google Scholar 

  45. Hoyos V, Savoldo B, Quintarelli C et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Huang G, Yu L, Cooper LJ et al (2012) Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res 72(1):271–281

    Article  PubMed  CAS  Google Scholar 

  47. Introna M, Barbui AM, Bambacioni F et al (2000) Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 11(4):611–620

    Article  PubMed  CAS  Google Scholar 

  48. Ishikura H, Ikeda H, Abe H et al (2007) Identification of CLUAP1 as a human osteosarcoma tumor-associated antigen recognized by the humoral immune system. Int J Oncol 30(2):461–467

    PubMed  CAS  Google Scholar 

  49. Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA et al (2007) Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer 120(1):67–74

    Article  PubMed  CAS  Google Scholar 

  50. John LB, Devaud C, Duong CM et al (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646

    Article  PubMed  CAS  Google Scholar 

  51. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3):535–546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. June C, Rosenberg SA, Sadelain M et al (2012) T-cell therapy at the threshold. Nat Biotechnol 30(7):611–614

    Article  PubMed  CAS  Google Scholar 

  53. Kakarla S, Chow KK, Mata M et al (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21:1611–1620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Kalos M, Levine BL, Porter DL et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  PubMed  CAS  Google Scholar 

  56. Kerkar SP, Leonardi AJ, van Panhuys N (2013) Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol Ther 21(7):1369–1377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Kershaw MH, Wang G, Westwood JA et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980

    Article  PubMed  CAS  Google Scholar 

  58. Kershaw MH, Westwood JA, Parker LL et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Kloss CC, Condomines M, Cartellieri M et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75

    Article  PubMed  CAS  Google Scholar 

  60. Kochenderfer JN, Dudley ME, Feldman SA et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112(12):4371–4383

    Article  PubMed  CAS  Google Scholar 

  62. Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    Article  PubMed  Google Scholar 

  63. Lanitis E, Poussin M, Klattenhof A et al (2013) Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res (OnLine First April 7, 2013)

    Google Scholar 

  64. Leen AM, Bollard CM, Mendizabal AM et al (2013) Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121(26):5113–5123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Leen AM, Myers GD, Sili U et al (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12(10):1160–1166

    Article  PubMed  CAS  Google Scholar 

  66. Leen AM, Rooney CM, Foster AE (2007) Improving T cell therapy for cancer. Annu Rev Immunol 25:243–265

    Article  PubMed  CAS  Google Scholar 

  67. Leen A, Katari U, Keiman J et al (2011) Improved expansion and anti-tumor activity of tumor-specific CTLs using a transgenic chimeric cytokine receptor. Mol Ther 19(S1):S194

    Google Scholar 

  68. Levine BL, Rapoport AP, Stadtmauer EA et al (2013) Safety and correlates of clinical response in an early phase clinical trial in multiple myeloma patients post auto-SCT and adoptive immunotherapy with engineered T cells expressing an HLA-A2 restricted affinity-enhanced TCR for LAGE-1 and NY-ESO-1. Mol Ther 21(S1):S114

    Google Scholar 

  69. Liu C, Peng W, Xu C et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Lou Y, Wang G, Lizee G et al (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64(18):6783–6790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Louis CU, Savoldo B, Dotti G et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Louis CU, Straathof K, Bollard CM et al (2010) Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 33(9):983–990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Maher J (2012) Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN Oncol 2012:278093

    PubMed  PubMed Central  Google Scholar 

  74. Maus MV, Linette GP, Stadtmauer EA et al (2013) Cardiovascular toxicity and Titin cross-reactivity of affinity-enhanced TCR-engineered T cells against HLA-A1 restricted MAGE-A3 antigen. Mol Ther 21(suppl):S24

    Google Scholar 

  75. Modak S, Kramer K, Gultekin SH et al (2001) Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res 61(10):4048–4054

    PubMed  CAS  Google Scholar 

  76. Morgan RA, Chinnasamy N, Abate-Daga D et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Morris CD, Gorlick R, Huvos G et al (2001) Human epidermal growth factor receptor 2 as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat Res 382:59–65

    Article  PubMed  Google Scholar 

  80. Myers D, Jun J, Rooney C et al (2013) Administration of GD2 chimeric antigen receptor modified, tri-virus specific cytotoxic T lymphocytes after HLA mismatched allogeneic stem cell transplantation for relapsed, refractory neuroblastoma. Mol Ther 22(S1):S5–S6

    Google Scholar 

  81. Niederman TM, Ghogawala Z, Carter BS et al (2002) Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci U S A 99(10):7009–7014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Okamoto S, Mineno J, Ikeda H et al (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 69(23):9003–9011

    Article  PubMed  CAS  Google Scholar 

  83. Orentas RJ (2013) Reading the tea leaves of tumor-mediated immunosuppression. Clin Cancer Res 19(5):955–957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Orentas RJ, Lee DW, Mackall C (2012) Immunotherapy targets in pediatric cancer. Front Oncol 2:3

    PubMed  PubMed Central  Google Scholar 

  85. Overwijk WW, Theoret MR, Finkelstein SE et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Park JR, Digiusto DL, Slovak M et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833

    PubMed  CAS  Google Scholar 

  87. Parkhurst MR, Yang JC, Langan RC et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Peggs KS, Quezada SA, Allison JP (2009) Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol 157(1):9–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Pegram HJ, Lee JC, Hayman EG et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18):4133–4141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Perna SK, De AB, Pagliara D et al (2013) Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 19(1):106–117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25(1):30–38

    Article  PubMed  CAS  Google Scholar 

  92. Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Pule MA, Savoldo B, Myers GD et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Pule MA, Straathof KC, Dotti G et al (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941

    Article  PubMed  CAS  Google Scholar 

  95. Quintarelli C, Vera JF, Savoldo B et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110(8):2793–2802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Rainusso N, Brawley VS, Ghazi A et al (2012) Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther 19(3):212–217

    Article  PubMed  CAS  Google Scholar 

  98. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  PubMed  CAS  Google Scholar 

  99. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  100. Roberts EW, Deonarine A, Jones JO et al (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210(6):1137–1151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Rosenberg SA, Restifo NP, Yang JC et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Rossig C, Bollard CM, Nuchtern JG et al (2001) Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int J Cancer 94(2):228–236

    Article  PubMed  CAS  Google Scholar 

  103. Rouleau C, Curiel M, Weber W et al (2008) Endosialin protein expression and therapeutic target potential in human solid tumors: sarcoma versus carcinoma. Clin Cancer Res 14(22):7223–7236

    Article  PubMed  CAS  Google Scholar 

  104. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. Savoldo B, Ramos CA, Liu E et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121(5):1822–1826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Savoldo B, Rooney CM, Di Stasi A et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110(7):2620–2630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Schuberth PC, Jakka G, Jensen SM et al (2013) Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 20(4):386–395

    Article  PubMed  CAS  Google Scholar 

  108. Song XT, Turnis M, Zhou X et al (2010) A Th1-inducing adenoviral vaccine for boosting adoptively transferred T cells. Mol Ther 19(1):211–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Stephan MT, Ponomarev V, Brentjens RJ et al (2007) T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med 13(12):1440–1449

    Article  PubMed  CAS  Google Scholar 

  110. Straathof KC, Bollard CM, Popat U et al (2005) Treatment of nasopharyngeal carcinoma with Epstein-Barr Virus-specific T lymphocytes. Blood 105:1898–1904

    Article  PubMed  CAS  Google Scholar 

  111. Straathof KC, Pule MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Sun J, Dotti G, Huye LE et al (2010) T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol Ther 18(11):2006–2017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Sutherland CM, Krementz ET, Hornung MO et al (1976) Transfer of in vitro cytotoxicity against osteogenic sarcoma cells. Surgery 79(6):682–685

    PubMed  CAS  Google Scholar 

  114. Terakura S, Yamamoto TN, Gardner RA et al (2012) Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119(1):72–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    Article  PubMed  CAS  Google Scholar 

  116. Torikai H, Reik A, Liu PQ et al (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24):5697–5705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Tran E, Chinnasamy D, Yu Z et al (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210(6):1125–1135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Tsukahara T, Kawaguchi S, Torigoe T et al (2008) Prognostic impact and immunogenicity of a novel osteosarcoma antigen, papillomavirus binding factor, in patients with osteosarcoma. Cancer Sci 99(2):368–375

    Article  PubMed  CAS  Google Scholar 

  119. Urakawa H, Nishida Y, Nakashima H et al (2009) Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. Clin Exp Metastasis 26(8):1005–1012

    Article  PubMed  CAS  Google Scholar 

  120. Uttenthal BJ, Chua I, Morris EC et al (2012) Challenges in T cell receptor gene therapy. J Gene Med 14(6):386–399

    Article  PubMed  CAS  Google Scholar 

  121. van Der Bruggen P, Zhang Y, Chaux P et al (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Article  Google Scholar 

  122. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Watanabe N, Anurathapan U, Brenner M et al (2013) Transgenic expression of a novel immunosuppressive signal converter on T cells. Mol Ther 22(S1):S153

    Google Scholar 

  124. Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238):985–988

    Article  PubMed  CAS  Google Scholar 

  125. Wilkie S, Burbridge SE, Chiapero-Stanke L et al (2010) Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem 285(33):25538–25544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Wilkie S, van Schalkwyk MC, Hobbs S et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070

    Article  PubMed  CAS  Google Scholar 

  127. Willemsen RA, Debets R, Hart E et al (2001) A phage display selected fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther 8(21):1601–1608

    Article  PubMed  CAS  Google Scholar 

  128. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  129. Yu AL, Uttenreuther-Fischer MM, Huang CS et al (1998) Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol 16(6):2169–2180

    PubMed  CAS  Google Scholar 

  130. Yuan D, Liu B, Liu K et al (2013) Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J Surg Oncol 108(3):157–162

    Article  PubMed  CAS  Google Scholar 

  131. Zhang L, Kerkar SP, Yu Z et al (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are supported by NIH grants 1R01CA148748-01A1, 1R01CA173750-01, P01CA094237, CPRIT RP101335, Alex’s Lemonade Stand Foundation, The V Foundation, and Cookies for Kid’s Cancer.

Conflict of interest. The Center for Cell and Gene Therapy has a research collaboration with Celgene and bluebird bio. CD and SG have patent applications in the field of T-cell and gene-modified T-cell therapy for cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Gottschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeRenzo, C., Gottschalk, S. (2014). Genetically Modified T-Cell Therapy for Osteosarcoma. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_18

Download citation

Publish with us

Policies and ethics