Skip to main content

Participation of the Fas/FasL Signaling Pathway and the Lung Microenvironment in the Development of Osteosarcoma Lung Metastases

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Abstract

The lungs are the most common site for the metastatic spread of osteosarcoma. Success in using chemotherapy to improve overall survival has reached a plateau. Understanding the biologic properties that permit osteosarcoma cells to grow in the lungs may allow the identification of novel therapeutic approaches—the goal being to alter the tumor cells’ expression of cell surface proteins so that there is no longer compatibility with the metastatic niche. We have demonstrated that the Fas Ligand positive (FasL+) lung microenvironment eliminates Fas+ osteosarcoma cells that metastasize to the lungs. Indeed, osteosarcoma lung metastases from patients are Fas, similar to what we found in several different mouse models. The Fas+ cells are cleared from the lungs through apoptosis induced by the Fas signaling pathway following interaction of Fas on the tumor cell surface with the lung FasL. Blocking the Fas signaling pathway interferes with this process, allowing the Fas+ cells to grow in the lungs. Our investigations show that Fas expression in osteosarcoma cells is regulated epigenetically by the micro-RNA miR-20a, encoded by the miR-17-92 cluster. Our studies support the feasibility of finding agents that can re-induce Fas expression as a novel therapeutic approach to treat osteosarcoma patients with lung metastases. We have identified two such agents, the histone deacetylase inhibitor entinostat and the chemotherapeutic agent gemcitabine (GCB). Aerosol GCB and oral entinostat induce the upregulation of Fas and the regression of established osteosarcoma lung metastases. Aerosol GCB was not effective in the FasL-deficient gld mouse confirming that the lung microenvironment was central to the success of this therapy. Our studies establish the critical role of the lung microenvironment in the metastatic process of osteosarcoma to the lungs and suggest an alternative focus for therapy, that is, incorporating the lung microenvironment as part of the treatment strategy against established osteosarcoma disease in the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 21(Suppl 7):vii320–vii325

    PubMed  Google Scholar 

  2. Jeffree GM, Price CH, Sissons HA (1975) The metastatic patterns of osteosarcoma. Br J Cancer 32(1):87–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341(5):342–352

    Article  PubMed  CAS  Google Scholar 

  4. Harting MT, Blakely ML (2006) Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg 15(1):25–29

    Article  PubMed  Google Scholar 

  5. Longhi A et al (2006) Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 32(6):423–436

    Article  PubMed  Google Scholar 

  6. Kempf-Bielack B et al (2005) Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 23(3):559–568

    Article  PubMed  Google Scholar 

  7. Meyers PA et al (2008) Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival - A report from the Children’s Oncology Group. J Clin Oncol 26(4):633–638

    Article  PubMed  CAS  Google Scholar 

  8. Chou AJ et al (2009) Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 115(22):5339–5348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Lee HO, Ferguson TA (2003) Biology of FasL. Cytokine Growth Factor Rev 14(3–4):325–335

    Article  PubMed  CAS  Google Scholar 

  10. Algeciras-Schimnich A et al (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22(1):207–220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ferguson TA, Green DR (2001) Fas-ligand and immune privilege: the eyes have it. Cell Death Differ 8(7):771–772

    Article  PubMed  CAS  Google Scholar 

  12. Moller P et al (1994) Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 57(3):371–377

    Article  PubMed  CAS  Google Scholar 

  13. O’Brien DI et al (2005) Targeting the Fas/Fas ligand pathway in cancer. Expert Opin Ther Targets 9(5):1031–1044

    Article  PubMed  Google Scholar 

  14. Owen-Schaub LB et al (1998) Fas and Fas ligand interactions suppress melanoma lung metastasis. J Exp Med 188(9):1717–1723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Lafleur EA et al (2004) Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 10(23):8114–8119

    Article  PubMed  CAS  Google Scholar 

  16. Worth LL et al (2002) Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep 9(4):823–827

    PubMed  CAS  Google Scholar 

  17. Jia SF, Worth LL, Kleinerman ES (1999) A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clin Exp Metastasis 17(6):501–506

    Article  PubMed  CAS  Google Scholar 

  18. Koshkina NV et al (2007) Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 5(10):991–999

    Article  PubMed  CAS  Google Scholar 

  19. Gordon N et al (2005) Fas expression in lung metastasis from osteosarcoma patients. J Pediatr Hematol Oncol 27(11):611–615

    Article  PubMed  Google Scholar 

  20. Gordon N et al (2007) Corruption of the Fas pathway delays the pulmonary clearance of murine osteosarcoma cells, enhances their metastatic potential, and reduces the effect of aerosol gemcitabine. Clin Cancer Res 13(15 Pt 1):4503–4510

    Article  PubMed  CAS  Google Scholar 

  21. Gordon N, Kleinerman ES (2009) The role of Fas/FasL in the metastatic potential of osteosarcoma and targeting this pathway for the treatment of osteosarcoma lung metastases. Cancer Treat Res 152:497–508

    Article  PubMed  Google Scholar 

  22. Rao-Bindal K et al (2013) Expression of c-FLIP in pulmonary metastases in osteosarcoma patients and human xenografts. Pediatr Blood Cancer 60(4):575–579

    Article  PubMed  Google Scholar 

  23. Rao-Bindal K et al (2013) The histone deacetylase inhibitor, entinostat (entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 13(4):411–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zhou Z et al (2005) Interleukin-12 up-regulates Fas expression in human osteosarcoma and Ewing’s sarcoma cells by enhancing its promoter activity. Mol Cancer Res 3(12):685–691

    Article  PubMed  CAS  Google Scholar 

  25. Duan X et al (2006) Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 106(6):1382–1388

    Article  PubMed  CAS  Google Scholar 

  26. Gordon N, Kleinerman ES (2010) Aerosol therapy for the treatment of osteosarcoma lung metastases: targeting the Fas/FasL pathway and rationale for the use of gemcitabine. J Aerosol Med Pulm Drug Deliv 23(4):189–196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Koshkina NV, Kleinerman ES (2005) Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int J Cancer 116(3):458–463

    Article  PubMed  CAS  Google Scholar 

  28. Micheau O et al (1997) Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J Natl Cancer Inst 89(11):783–789

    Article  PubMed  CAS  Google Scholar 

  29. Poulaki V, Mitsiades CS, Mitsiades N (2001) The role of Fas and FasL as mediators of anticancer chemotherapy. Drug Resist Updat 4(4):233–242

    Article  PubMed  CAS  Google Scholar 

  30. Friesen C et al (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med 2(5):574–577

    Article  PubMed  CAS  Google Scholar 

  31. Petak I et al (2003) Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 10(2):211–217

    Article  PubMed  CAS  Google Scholar 

  32. Walker PR et al (2000) Loss of Fas (CD95/APO-1) expression by antigen-specific cytotoxic T cells is reversed by inhibiting DNA methylation. Cell Immunol 206(1):51–58

    Article  PubMed  CAS  Google Scholar 

  33. Santourlidis S et al (2001) Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor kappa B sites in prostatic carcinoma. Mol Carcinog 32(1):36–43

    Article  PubMed  CAS  Google Scholar 

  34. Teodoridis JM et al (2005) CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 65(19):8961–8967

    Article  PubMed  CAS  Google Scholar 

  35. Butler LM et al (2000) Promoter region methylation does not account for the frequent loss of expression of the Fas gene in colorectal carcinoma. Br J Cancer 82(1):131–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Huang GX, Koshkina NV, Kleinerman ES (2009) Fas expression in metastatic osteosarcoma cells is not regulated by CpG island methylation. Oncol Res 18(1):31–39

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  PubMed  CAS  Google Scholar 

  38. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12):3646–3653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  40. Inomata M et al (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2):396–402

    Article  PubMed  CAS  Google Scholar 

  41. Ovcharenko D et al (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67(22):10782–10788

    Article  PubMed  CAS  Google Scholar 

  42. Petrocca F et al (2008) E2F1-regulated microRNAs impair TGF beta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3):272–286

    Article  PubMed  CAS  Google Scholar 

  43. Schickel R et al (2010) mir-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 38(6):908–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Suzuki Y et al (2010) Diazoxide potentiates mesenchymal stem cell survival via NF-kappa B-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol 299(4):H1077–H1082

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Tili E et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089

    Article  PubMed  CAS  Google Scholar 

  46. Ota A et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095

    Article  PubMed  CAS  Google Scholar 

  47. Hayashita Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  PubMed  CAS  Google Scholar 

  48. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  CAS  Google Scholar 

  49. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220

    Article  PubMed  CAS  Google Scholar 

  50. Novello C et al (2013) miRNA expression profile in human osteosarcoma: role of miR-1 and miR-133b in proliferation and cell cycle control. Int J Oncol 42(2):667–675

    PubMed  CAS  Google Scholar 

  51. Namlos HM et al (2012) Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One 7(10):48086

    Article  Google Scholar 

  52. Huang G et al (2012) miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72(4):908–916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Baumhoer D et al (2012) MicroRNA profiling with correlation to gene expression revealed the oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer Genet 205(5):212–219

    Article  PubMed  CAS  Google Scholar 

  54. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68(19):8164–8172

    Article  PubMed  CAS  Google Scholar 

  55. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671

    Article  PubMed  CAS  Google Scholar 

  56. Rao-Bindal K, Zhou Z, Kleinerman ES (2012) Entinostat sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell Death Dis 3:e369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Koshkina NV, Rao-Bindal K, Kleinerman ES (2011) Effect of the histone deacetylase inhibitor SNDX-275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer 117(15):3457–3467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Escaffit F et al (2007) Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol 27(2):554–567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Senese S et al (2007) Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol 27(13):4784–4795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Grassme H et al (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276(23):20589–20596

    Article  PubMed  CAS  Google Scholar 

  61. Ryan QC et al (2005) Phase I and pharmacokinetic study of entinostat, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23(17):3912–3922

    Article  PubMed  CAS  Google Scholar 

  62. Okuno S et al (2002) Phase II trial of gemcitabine in advanced sarcomas. Cancer 94(12):3225–3229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenie S. Kleinerman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, G., Nishimoto, K., Yang, Y., Kleinerman, E.S. (2014). Participation of the Fas/FasL Signaling Pathway and the Lung Microenvironment in the Development of Osteosarcoma Lung Metastases. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_11

Download citation

Publish with us

Policies and ethics