Skip to main content

The Ricci Flow on Some Generalized Wallach Spaces

  • Conference paper
  • First Online:
Geometry and its Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 72))

Abstract

We study the asymptotic behavior of the normalized Ricci flow on generalized Wallach spaces that could be considered as a special planar dynamical system. All nonsymmetric generalized Wallach spaces can be naturally parametrized by three positive numbers \(a_{1},a_{2},a_{3}\). Our interest is to determine the type of singularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points \((a_{1},a_{2},a_{3})\) in the cube \((0,1/2] \times (0,1/2] \times (0,1/2]\). We also consider in detail some important partial cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abiev N.A., Arvanitoyeorgos A., Nikonorov Yu.G., Siasos P. The dynamics of the Ricci flow on generalized Wallach spaces // Differential Geom. Appl. (2014), http://dx.doi.org/10.1016/j.difgeo.2014.02.002

  2. Anastassiou S., Chrysikos I. The Ricci flow approach to homogeneous Einstein metrics on flag manifolds // J. Geom. Phys. (2011), V. 61, No. 8, P. 1587–1600.

    Google Scholar 

  3. Arvanitoyeorgos A. New invariant Einstein metrics on generalized flag manifolds // Trans. Amer. Math. Soc. (1993), V. 337, No. 2, P. 981–995.

    Google Scholar 

  4. Arnold V. I., Gusein-Zade S. M. and Varchenko A. N. Singularities of differentiable maps. Vol. I, Monogr. Math. 82, Birkhäuser Boston, Inc., Boston, MA, 1986.

    Google Scholar 

  5. Besse A. L. Einstein Manifolds. Springer-Verlag. Berlin, etc., 1987.

    Google Scholar 

  6. Böhm C., Wilking B. Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature // GAFA Geom. Func. Anal. (2007), v. 17, P. 665–681.

    Google Scholar 

  7. Buzano M. Ricci flow on homogeneous spaces with two isotropy summands // Ann. Glob. Anal. Geom. (2014), V. 45, No. 1, P. 25–45.

    Google Scholar 

  8. Chow B., Knopf D. The Ricci Flow: an Introduction. Mathematical Surveys and Monographs, AMS, Providence, RI, 2004.

    Google Scholar 

  9. D’Atri J. E., Nickerson N. Geodesic symmetries in space with special curvature tensors // J. Different. Geom. (1974), V. 9, P. 251–262.

    Google Scholar 

  10. D’Atri J. E., Ziller W. Naturally reductive metrics and Einstein metrics on compact Lie groups // Mem. Amer. Math. Soc. (1979), V. 215, P. 1–72.

    Google Scholar 

  11. Darboux G. Lecȩons sur la Théorie générale des Surfaces, IV, Gauthier-Villars, Paris, 1896.

    Google Scholar 

  12. Dumortier F., Llibre J., Artes J. Qualitative theory of planar differential systems. Universitext. Springer-Verlag, Berlin, 2006. xvi+298 pp.

    Google Scholar 

  13. Glickenstein D. Payne T. L. Ricci flow on three-dimensional, unimodular metric Lie algebras // Commun. Anal. Geom. (2010), V. 18,  No. 5, P. 927–961.

    Google Scholar 

  14. Hamilton R. S. Three-manifolds with positive Ricci curvature // J. Differential Geom. (1982), V. 17, P. 255–306.

    Google Scholar 

  15. Isenberg J., Jackson M., Lu P. Ricci flow on locally homogeneous closed 4-manifolds // Comm. Anal. Geom. (2006), V. 14, No. 2, P. 345–386.

    Google Scholar 

  16. Jiang Q., Llibre J. Qualitative classification of singular points // Qual. Theory Dyn. Syst. (2005), V. 6, No. 1, P. 87–167.

    Google Scholar 

  17. Kimura M. Homogeneous Einstein metrics on certain Kähler C-spaces // Adv. Stud. Pure Math. (1990), V. 18, No. 1, P. 303–320.

    Google Scholar 

  18. Lauret J. Ricci flow of homogeneous manifolds // Math. Z. (2013), V. 274, No. 1–2, P. 373–403.

    Google Scholar 

  19. Lomshakov A. M., Nikonorov Yu. G., Firsov E. V. On invariant Einstein metrics on three-locally-symmetric spaces // Doklady Mathematics (2002), V. 66, No. 2, P. 224–227.

    Google Scholar 

  20. Lomshakov A. M., Nikonorov Yu. G., Firsov E. V. Invariant Einstein Metrics on Three-Locally-Symmetric Spaces // Matem. tr. (2003), V. 6, No. 2. P. 80–101 (Russian); English translation in: Siberian Adv. Math. (2004), V. 14, No. 3, P. 43–62.

    Google Scholar 

  21. Nikonorov Yu. G., Rodionov E. D., Slavskii V. V. Geometry of homogeneous Riemannian manifolds // Journal of Mathematical Sciences (New York) (2007), V. 146, No. 7, P. 6313–6390.

    Google Scholar 

  22. Nikonorov Yu. G. On a class of homogeneous compact Einstein manifolds // Sibirsk. Mat. Zh. (2000), V. 41, No. 1, P. 200–205 (Russian); English translation in: Siberian Math. J. (2000), V. 41, No. 1, P. 168–172.

    Google Scholar 

  23. Payne T. L. The Ricci flow for nilmanifolds // J. Mod. Dyn. (2010), V. 4, No. 1, P. 65–90.

    Google Scholar 

  24. Rodionov E. D. Einstein metrics on even-dimensional homogeneous spaces admitting a homogeneous Riemannian metric of positive sectional curvature // Sibirsk. Mat. Zh. (1991), V. 32, No. 3, P. 126–131 (Russian); English translation in: Siberian Math. J. (1991), V. 32, No. 3, P. 455–459.

    Google Scholar 

  25. Thom R. Topological models in biology // Topology (1969), V. 8, P. 313–335.

    Google Scholar 

  26. Topping P. Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, vol. 325, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  27. Wallach N. Compact homogeneous Riemannian manifolds with strictly positive curvature // Annals of Mathematics, Second Series. (1972), V. 96, P. 277–295.

    Google Scholar 

  28. Woodcock A. E. R., Poston T. A geometrical study of the elementary catastrophes, Lecture Notes in Mathematics, vol. 373, Springer-Verlag, Berlin-New York, 1974.

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. Yusuke Sakane for useful discussions concerning computational aspects of this project and to Tanya Nikonorova for her help with the graphics. The project was supported in part by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSh-921.2012.1) and by Federal Target Grant “Scientific and educational personnel of innovative Russia” for 2009–2013 (agreement no. 8206, application no. 2012-1.1-12-000-1003-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Nikonorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abiev, N.A., Arvanitoyeorgos, A., Nikonorov, Y.G., Siasos, P. (2014). The Ricci Flow on Some Generalized Wallach Spaces. In: Rovenski, V., Walczak, P. (eds) Geometry and its Applications. Springer Proceedings in Mathematics & Statistics, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-319-04675-4_1

Download citation

Publish with us

Policies and ethics