Skip to main content

Ohmic and Rectifying Contacts to Porous Silicon

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Porous silicon (PS) is a promising material for photonic, optoelectronic, and sensor devices. However, achieving stable metallic contacts to porous silicon has been a challenge. Oxidation of the Si-Hx bond on porous silicon surface on exposure to aerial atmosphere is the main reason of the instability. This review highlights the attempts made to modify the PS surface and make stable ohmic and rectifying contacts. Data on different metals, alloys, and conducting polymers utilized to treat the surface of porous silicon prior to the formation of ohmic and rectifying contacts are provided in tabular form. The methods deployed to deposit the contact materials on porous silicon are also summarized. The performance of noble metal treatment of porous silicon surface by electroless deposition is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson RC, Muller RS, Tobias CW (1991) Investigation of electrical properties of porous silicon. J Electrochem Soc 138:3406–3411

    Article  Google Scholar 

  • Anderson RC, Muller RS, Tobias CW (1993) Chemical surface modification of porous silicon. J Electrochem Soc (USA) 140:1393–1396

    Article  Google Scholar 

  • Andersson HA, Thungstrom G, Nilsson H (2008) Electroless deposition and silicidation of Ni contacts into p-type porous silicon. J Porous Mater 15:335–341

    Article  Google Scholar 

  • Andsager D, Hilliard J, Nayfeh MH (1994) Behavior of porous silicon emission spectra during quenching by immersion in metal ion solutions. Appl Phys Lett 64:1141–1143

    Article  Google Scholar 

  • Angelescu A, Kleps I (1998) Metallic contacts on porous silicon layers. In: IEEE conference, pp 447–450. Sinaia

    Google Scholar 

  • Archer M, Fauchet PM (2003) Electrical sensing of DNA hybridization in porous silicon layers. Phys Status Solidi A 198:503–507

    Article  Google Scholar 

  • Arenas MC, Hu H, Rıo JA et al (2006) Electrical properties of porous silicon/polypyrrole heterojunctions. Sol Energy Mater Sol Cells 90:2413–2420

    Article  Google Scholar 

  • Astrova EV, Ratnikov VV, Remenyuk AD et al (2002) Strains and crystal lattice defects arising in macroporous silicon under oxidation. Semiconductors 36:1033–1042

    Article  Google Scholar 

  • Banihashemian SM, Hajghassem H, Erfanian A et al (2010) Observation and measurement of negative differential resistance on PtSi Schottky junctions on porous silicon. Sensors 10:1012–1020. doi:10.3390/s100201012

    Article  Google Scholar 

  • Barillaro G, Nannini A, Pieri F (2003) APSFET: a new, porous silicon based gas sensing devices. Sens Actuators B 93:263–270

    Article  Google Scholar 

  • Basu S, Kanungo J (2011) Nanocrystalline porous silicon. In: Basu S (ed) Crystalline silicon – properties and uses. InTech – Open Access Publisher, Rijeka, Croatia. ISBN 978-953-307-587-7

    Chapter  Google Scholar 

  • Beckmann KH (1965) Investigation of the chemical properties of stain films on silicon by means of infrared spectroscopy. Surf Sci 3:314–332

    Article  Google Scholar 

  • Bhattacharya E, Ramesh P, Kumar CS (2000) Studies on gold/porous silicon/crystalline silicon junctions. J Porous Mater 7:299–301

    Article  Google Scholar 

  • Bsiesy A, Vial JC, Gaspard F et al (1991) Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers. Surf Sci 254:195–200

    Article  Google Scholar 

  • Canham L (ed) (1997) Properties of porous silicon. INSPEC – The Institution of Electrical Engineers, London

    Google Scholar 

  • Cherif A, Jomni S, Hannachi R et al (2013) Electrical investigation of the Al/porousSi/p + -Si heterojunction. Phys B 409:10–15

    Article  Google Scholar 

  • Deresmes D, Marissael V, Stievenard D et al (1995) Electrical behaviour of aluminium-porous silicon junctions. Thin Solid Films 255:258–261

    Article  Google Scholar 

  • Dhar S, Chakrabarti S (1996) Electroless nickel plated contacts on porous silicon. Appl Phys Lett 68(10):1392–1393

    Article  Google Scholar 

  • Diligenti A, Nannini A, Pennelli G et al (1996) Electrical characterization of metal Schottky contacts on luminescent porous silicon. Thin Solid Films 276:179–182

    Article  Google Scholar 

  • Dimitrov DB (1995) Current-voltage characteristics of porous silicon layer. Phys Rev B 51:1562–1566

    Article  Google Scholar 

  • Fan J, Wan M, Zhu D (1998) Studies on the rectifying effect of the heterojunction between porous silicon and water-soluble copolymer of polyaniline. Synth Metals 95:119–124

    Article  Google Scholar 

  • Gallach D, Torres-Costa V, García-Pelayo L et al (2012) Properties of bilayer contacts to porous silicon. Appl Phys A 107:293–300

    Article  Google Scholar 

  • Ghosh S, Hong K, Lee C (2002) Structural and physical properties of thin copper films deposited on porous silicon. Mater Sci Eng B 96:53–59

    Article  Google Scholar 

  • Giebel G, Pavesi L (1995) About the I-V characteristics of metal porous silicon diode. Phys Status Solidi (A) 151:355–361

    Article  Google Scholar 

  • Halliday DP, Holland ER, Eggleston JM et al (1996) Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films 276:299–302

    Article  Google Scholar 

  • Han Z, Shi J, Tao H et al (1994) Photovoltaic effect of a metal/porous silicon/silicon structure. Phys Lett A 186:265–268

    Article  Google Scholar 

  • Ichinohe T, Nozaki S, Morisaki H (1996) Visible light emission from the porous alloyed PtlSi contacts. Thin Solid Films 281–282:610–612

    Article  Google Scholar 

  • Jeske M, Schultze JW, Thonissen M et al (1995) Electrodeposition of metals into porous silicon. Thin Solid Films 255:63–66

    Article  Google Scholar 

  • Kanungo J, Pramanik C, Bandopadhyay S et al (2006) Improved contacts on a porous silicon layer by electroless nickel plating and copper thickening. Semicond Sci Technol 21:964–970

    Article  Google Scholar 

  • Kanungo J, Maji S, Saha H et al (2009a) Stable aluminium ohmic contact to surface modified porous silicon. Solid-State Electron 53:663–668

    Article  Google Scholar 

  • Kanungo J, Saha H, Basu S (2009b) Room temperature metal-insulator –semiconductor (MIS) hydrogen sensors based on chemically surface modified porous silicon. Sens Actuators B 140:65–72

    Article  Google Scholar 

  • Kanungo J, Selegard L, Vahlberg C et al (2010) XPS study of palladium sensitized nano porous silicon thin film Bull. Mater Sci 33:647–651

    Google Scholar 

  • Karacali T, Cakmak B, Efeoglu H (2003) Aging of porous silicon and the origin of blue shift. Opt Express 11:1237–1242

    Article  Google Scholar 

  • Lauerhaas JM, Sailor MJ (1993) The effects of halogen exposure on the photoluminescence of porous silicon. Mater Res Soc Symp Proc (USA) 298:259–263

    Article  Google Scholar 

  • Lees IN, Lin H, Canaria CA, Miskelly GM et al (2003) Chemical stability of porous silico surfaces electrochemically modified with functional alkyl species. Langmuir 19:9812–9817

    Article  Google Scholar 

  • Li K, Diaz DC, He Y et al (1994) Electroluminescence from porous silicon with conducting polymer film contacts. Appl Phys Lett 64(18):2394–2396

    Article  Google Scholar 

  • Lin JC, Tsai WC, Lee WS (2006) The improved electrical contact between a metal and porous silicon by deposition using a supercritical fluid. Nanotechnology 17:2968–2971

    Article  Google Scholar 

  • Lue JT, Chang CS, Chen CY et al (1999) The bistable switching property of a porous-silicon Schottky barrier diode during the charging period. Thin Solid Films 339:294–298

    Article  Google Scholar 

  • Maji S, Das RD, Jana M et al (2010) Formation of ohmic contact by pre-annealing of shallow nanopores in macroporous silicon and its characterization. Solid-State Electron 54:568–574

    Article  Google Scholar 

  • Mandal NP, Sharma A, Agarwal SC (2006) Improved stability of nanocrystalline porous silicon after coating with a polymer. J Appl Phys 100:024308–024311

    Article  Google Scholar 

  • Martıin-Palma RJ, Perez-Rigueiro J, Guerrero-Lemus R et al (1999) Ageing of aluminum electrical contacts to porous silicon. J Appl Phys 85(1):583–586

    Article  Google Scholar 

  • Matsumoto T, Mimura H, Koshida N et al (1998) The density of states in silicon nanostructures determined by space-charge-limited current measurements. J Appl Phys 84(11):6157–6161

    Article  Google Scholar 

  • Neamen DA (2003) Semiconductor physics and devices: basic principles. Tsinghua University Press, Beijing

    Google Scholar 

  • Petrova EA, Bogoslovskaya KN, Balagurov LA et al (2000) Room temperature oxidation of porous silicon in air. Mater Sci Eng B 69–70:152–156

    Article  Google Scholar 

  • Petrova-Koch V, Muschik T, Kux A et al (1992) Rapid-thermal-oxidized porous Si–the superior photoluminescent Si. Appl Phys Lett 61:943–945

    Article  Google Scholar 

  • Porter LA, Choi HC, Ribbe AE et al (2002) Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett 2:1067–1071

    Article  Google Scholar 

  • Rabinal MK, Mulimani BG (2007) Transport properties of molecularly stabilized porous silicon schottky junctions. New J Phys 9:440–448

    Article  Google Scholar 

  • Rossi AM, Amato G, Camarchia V et al (2001) High-quality porous-silicon buried waveguides. Appl Phys Lett 78(20):3003–3005

    Article  Google Scholar 

  • Shen Y, Wan M (1998) Heterojunction diodes of soluble conducting polypyrrole with porous silicon. Synth Metals 98:147–152

    Article  Google Scholar 

  • Simons AJ, Cox TI, Uren MJ et al (1995) The electrical properties of porous silicon produced from n + silicon substrates. Thin Solid Films 255:12–15

    Article  Google Scholar 

  • Skryshevsky VA, Strikha VI, Mamikin AV et al (1998) Availability of current -voltage characteristics for porous silicon gas sensors, Discrete gas sensor. Paper presented at eorosensors XII 13–16 Sept 277–280

    Google Scholar 

  • Slobodchikov SV, Salikhov Kh M, Russu EV (1998) Current transport in porous p-Si and Pd-porous Si structures. Semiconductors 32(9):960–962

    Article  Google Scholar 

  • Slobodchikov SV, Goryachev DN, Salikhovand Kh M et al (1999) Electrical and photoelectric characteristics of n-Si/porous silicon/Pd diode structures and the effect of gaseous hydrogen on them. Semiconductors 33(3):339–342

    Article  Google Scholar 

  • Steiner P, Kozlowski F, Wielunski M et al (1994) Enhanced blue-light emission from an indium-treated porous silicon device. Jpn J Appl Phys 33:6075–6077

    Article  Google Scholar 

  • Stievenard D, Deresmes D (1995) Are electrical properties of an aluminium-porous silicon junction governed by dangling bonds? Appl Phys Lett 67:1570–1572

    Article  Google Scholar 

  • Sze SM (1985) Semiconductor devices: physics and technology. Wiley, New York

    Google Scholar 

  • Tsai C, Li KH, Sarathi J et al (1991) Thermal treatment studies of the photoluminescence intensity of porous silicon. Appl Phys Lett 59:2814–2816

    Article  Google Scholar 

  • Vikulov VA, Strikha VI, Skryshevsky VA (2000) Electrical features of the metal–thin porous silicon–silicon structure. J Phys D Appl Phys 33:1957–1964

    Article  Google Scholar 

  • Vinod PN (2005) Specific contact resistance of the porous silicon and silver metal Ohmic contact structure. Semicond Sci Technol 20:966–971

    Article  Google Scholar 

  • Vinod PN (2009) Specific contact resistance and carrier tunneling properties of the silver metal/porous silicon/p-Si ohmic contact structure. J Alloys Compd 470:393–396

    Article  Google Scholar 

  • Vinod PN (2013) The fire-through processed screen-printed Ag thick film metal contacts formed on an electrochemically etched porous silicon antireflection coating of silicon solar cells. RSC Adv 3:3618–3622

    Article  Google Scholar 

  • Zimin SP, Bragin AN (1999) Conductivity relaxation in coated porous silicon after annealing. Semiconductors 33(4):457–460

    Article  Google Scholar 

  • Zimin SP, Komarov EP (1998) Influence of short-term annealing on the conductivity of porous silicon and the transition resistivity of an aluminum-porous silicon contact. Tech Phys Lett 24(3):226–228

    Article  Google Scholar 

  • Zimin SP, Kuznetsov VS, Prokaznikov AV (1995) Electrical characteristics of aluminum contacts to porous silicon. Appl Surf Sci 91:355–358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayita Kanungo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Kanungo, J., Basu, S. (2014). Ohmic and Rectifying Contacts to Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics