Skip to main content

Soybean Seed Isoflavonoids: Biosynthesis and Regulation

  • Chapter
  • First Online:
Phytochemicals – Biosynthesis, Function and Application

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 44))

Abstract

Isoflavonoids are plant natural products, almost exclusive to legumes, synthesized by the phenylpropanoid pathway. They are actors in symbiosis with nitrogen-fixing bacteria and involved in plant pathogen and stress response. Isoflavonoids are noted for their wide range of human health benefits. Isoflavonoids, as phytoestrogens, can bind to estrogen receptors and modulate their activity in animals including humans. Soybean seeds contain three isoflavone aglycones that are glycosylated and/or malonylated and stored in vacuoles. The biosynthetic pathway starts with the recruitment of phenylalanine and enters its first committed branch step with the conversion of flavanone to isoflavone. Soybean seeds accumulate large amounts of isoflavonoids as a result of de novo synthesis and transport. The isoflavonoid content and composition in the seed are complex polygenic traits that are highly variable. Environmental factors, including drought, light conditions, fertilization, temperature and CO2 levels, and genetic factors, such as specific pathway gene members, transcription factors coordinating expression and conjugating enzymes, have all been shown to have an effect on isoflavonoid content. Understanding the genetic and molecular basis for isoflavonoid biosynthesis and its regulatory mechanisms will allow manipulation of content in soybean seeds and metabolic engineering of isoflavonoids in nonleguminous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lapcík O (2007) Isoflavonoids in non-leguminous taxa: Ararity or a rule? Phytochemistry 68:2909–2916

    Article  PubMed  CAS  Google Scholar 

  2. Reynaud J, Guilet D, Terreux R, Lussignol M, Walchshofer N (2005) Isoflavonoids in non-leguminous families: an update. Nat Prod Rep22:504–515

    Article  CAS  PubMed  Google Scholar 

  3. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence–A genomics perspective. Mol Plant Path 3:371–390

    Article  CAS  Google Scholar 

  4. Phillips DA, Kapulnik Y (1995) Plant isoflavonoids, pathogens and symbionts. Trends Microbiol 3:58–64

    Article  CAS  PubMed  Google Scholar 

  5. Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradirhizobium japonicum. Plant J 48:261–273

    Article  CAS  PubMed  Google Scholar 

  6. Cederroth CR, Nef S (2009) Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol 304:30–42

    Article  CAS  PubMed  Google Scholar 

  7. Dixon RA (2004) Phytooestrogen. Annu Rev Plant Biol 55:225–261

    Article  CAS  PubMed  Google Scholar 

  8. Dixon RA, Ferreria D (2002) Genistein. Phytochemistry 60:205–211

    Article  CAS  PubMed  Google Scholar 

  9. Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. Cancer J Clin 57:260–277

    Article  Google Scholar 

  10. Lamartiniere CA (2000) Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr 71:1705S–1707S

    CAS  PubMed  Google Scholar 

  11. Limer JL, Speirs V (2004) Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res 6:119–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Messina M (2010) Insights gained from 20 years of soy research. J Nutr 140:2259S–2295S

    Google Scholar 

  13. Pisani P, Bray F, Parkin MD (2002) Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Intl J Cancer 97:72–81

    Article  CAS  Google Scholar 

  14. Folman Y, Pope GS (1969) Effect of norethisterone acetate, dimethylstilboestrol, genistein and coumestrol on uptake of [3H] oestradiol by uterus, vagina and skeletal muscle of immature mice. J Endocrinol 44:213–218

    Article  CAS  PubMed  Google Scholar 

  15. Chen AM, Rogan WJ (2004) Isoflavones in soy infant formula: a review of evidence for endocrine and other activity infants. Annu Rev Nutr 24:33–54

    Article  CAS  PubMed  Google Scholar 

  16. Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110:349–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S (1995) Genistein suppresses mammary cancer in rats. Carcinogenesis 16:2833–2840

    Article  CAS  PubMed  Google Scholar 

  18. Gutierrez-Gonzalez JJ, Wu X, Zhang J, Lee JD, Ellersieck M, Shannon JG, Yu O, Nguyen HT, Sleper DA (2009) Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor Appl Genet 119:1069–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Igarashi D, Ishida S, Fukazawa J, Takahashi Y (2001) 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell 13:2483–2497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Korde LA, Wu AH, Fears T, Nomura AM, West DW, Kolonel L, Pike MC, However R, Ziegler RG (2009) Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev 18:1050–1059

    Article  CAS  PubMed  Google Scholar 

  21. Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes; what makes legumes so special? Plant Physiol 151:991–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Guo J, Xu X, Rasheed TK, Yoder A, Yu D, Liang H, Yi F, Hawley T, Jin T, Ling B, Wu Y (2013) Genistein interferes with SDF-1- and HIV-mediated actin dynamics and inhibits HIV infection of resting CD4 T cells. Retrovirology 10:62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68:1375S–1379S

    CAS  PubMed  Google Scholar 

  24. Howes LG, Howes JB, Knight DC (2006) Isoflavone therapy for menopausal flushes: a sytematic review and meta-analysis. Maturitas 55:203–211

    Article  CAS  PubMed  Google Scholar 

  25. Strom BL, Schinnar R, Ziegle EE, Barhard KT, Sammel MD, Macones GA, Stallings VA, Drulis JM, Nelson SE, Hanson SA (2001) Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. J Am Med Assoc 286:807–814

    Article  CAS  Google Scholar 

  26. Walker HA, Dean TS, Sanders TAB, Jackson G, Ritter JM, Chowienczyk PJ (2001) The phytoestrogen genistein produces acute nitric oxide-dependent dilation of human forearm vasculature with similar potency to 17 beta-estradiol. Circulation 103:258–262

    Article  CAS  PubMed  Google Scholar 

  27. Mendez MA, Anthony MS, Arab L (2002) Soy-based formulae and infant growth and development: a review. J Nutr 132:2127–2130

    CAS  PubMed  Google Scholar 

  28. Paxton JD (1981) Phytoalexins-a working redefinition. Phytopathologische Zeitschrift 101:106–109

    Article  Google Scholar 

  29. Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Graham TL (1995) Cellular biochemistry of phenylpropanoid responses of soybean to infection by Phytophthora sojae. In: Daniel M, Purkayanstha RP (eds) Handbook of phytoalexin metabolism and action. Marcel Dekker, New York, pp 85–116

    Google Scholar 

  31. Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679

    Article  CAS  PubMed  Google Scholar 

  32. Jeandet P, Clement C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Intl J Mol Sci 14:14136–14170

    Article  CAS  Google Scholar 

  33. Hsieh MC, Graham TL (2001) Partial purification and characterization of a soybean beta-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 58:995–1005

    Article  CAS  PubMed  Google Scholar 

  34. Rivera-Vargas LI, Schmitthenner AF, Graham TL (1993) Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32:851–857

    Article  CAS  Google Scholar 

  35. Lygin AV, Hill CB, Zernova OV, Crull L, Widholm JM, Hartman GL, Lozovaya VV (2010) Response of soybean pathogens to glyceollin. Phytopathology 100:897–903

    Article  CAS  PubMed  Google Scholar 

  36. Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Subramanian S, Graham MA, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Phillip DA (1992) Flavonoids: plant signals to soil microbes. In: Stafford HA, Ibrahim RK (eds) Recent advances in phytochemistry: phenolic metabolism in plants. Plenum Press, New York, pp 201–223

    Google Scholar 

  40. Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  CAS  PubMed  Google Scholar 

  41. Kudou S, Fleury Y, Welt D, Magnolato D, Uchida T, Kitamura K (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merill). Agric Biol Chem 55:2227–2233

    Article  CAS  Google Scholar 

  42. Griffith AP, Collison MW (2001) Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr 913:397–413

    Article  CAS  Google Scholar 

  43. Wang H, Murphy PA (1994) Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J Agric Food Chem 42:1674–1677

    Article  CAS  Google Scholar 

  44. Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291

    Article  PubMed  CAS  Google Scholar 

  45. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev of. Plant Biol 55:85–107

    Article  CAS  Google Scholar 

  46. Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  47. Liu RR, Hu YL, Li HL, Lin ZP (2007) Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng 9:1–7

    Article  PubMed  CAS  Google Scholar 

  48. Ritter H, Shulz GE (2004) Structural basis for the entrance into phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Shwede TF, Retey J, Shulz GE (1999) Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. BioChemistry 38:5355–5361

    Article  Google Scholar 

  50. Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Mol Biol 6:775–784

    Article  CAS  Google Scholar 

  51. Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol 143:326–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Yi J, Derynck MR, Chen L, Dhaubhadel S (2010) Differential expression of CHS7 and CHS8 genes in soybean. Planta 231:741–753

    Article  CAS  PubMed  Google Scholar 

  53. Bednar RA, Hadcock JR (1988) Purification and characterization of chalcone isomerase from soybeans. J Biol Chem 263:9582–9588

    CAS  PubMed  Google Scholar 

  54. Wang X (2011) Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Gen 11:13–22

    Article  CAS  Google Scholar 

  55. Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99:14578–14583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Shih C, Chen Y, Wang M, Chu IK, Lo C (2008) Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agric Food Chem 56:5655–5661

    Article  CAS  PubMed  Google Scholar 

  58. Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41:5168–5176

    Article  CAS  PubMed  Google Scholar 

  59. Jez JM, Bowman ME, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Mol Biol 7:786–791

    Article  CAS  Google Scholar 

  60. Gensheimer M, Mushegian A (2004) Chalcone isomerase family and fold: no longer unique to plants. Protein Sci 13:540–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Akashi T, Aoki T, Ayabe S-i (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:559–559

    Article  Google Scholar 

  63. Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    Article  CAS  PubMed  Google Scholar 

  64. Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743

    Article  CAS  PubMed  Google Scholar 

  65. Subramanian S, Hu X, Lu GH, Odell JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    Article  CAS  PubMed  Google Scholar 

  66. Sreevidya VS, Rao CS, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Botany 57:1957–1969

    Article  CAS  Google Scholar 

  67. Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: transquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  69. Li L, Modolo LV, Escamilla-Trevino LL, Achnine L, Dixon RA, Wang X (2007) Crystal structure of Medicago truncatula UGT85H2-insight into structural basis of a multifunctional (iso) flavonoid glycosyltransfer-ase. J Mol Biol 370:951–963

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki H, Nakayama T, Yonekura-Sakakibara Y, Fukui Y, Nakamura N, Yamaguchi M, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expression, and functional characterization of malonyl-coenzyme A: anthocyanidin 3-O-glucoside-6-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Dhaubhadel S, Farhangkhoee M, Chapman R (2008) Identification and characterisation of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Botany 59:981–994

    Article  CAS  Google Scholar 

  72. Suzuki H, Nishino T, Nakayama T (2007) cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6"-O-malonyltransferase. Phytochemistry 68:2035–2042

    Article  CAS  PubMed  Google Scholar 

  73. Du L, Halkier BA (1998) Biosynthesis of glucosinolates in the developing silique walls. Phytochemistry 48:1145–1150

    Article  CAS  Google Scholar 

  74. Gijzen M, McGregor I, Seguin-Swart G (1989) Glucosinolate uptake by developing rapeseed embryos. Plant Physiol 89:260–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Shitan N, Morita M, Yazaki K (2009) Identification of a nicotine transporter in leaf vacuoles of Nicotiana tabacum. Plant Signal Behav 4:530–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Dhaubhadel S (2011) Regulation of isoflavonoid biosynthesis in soybean seeds. In: Ng T-B (ed) Soybean–biochemistry, chemistry and physiology. In Tech, Croatia, pp 243–258

    Google Scholar 

  77. Aussenac T, Lacombe S, Dayde J (1998) Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment. Am J Clin Nutr 68:1480S

    CAS  PubMed  Google Scholar 

  78. Berger M, Rasolohery CA, Cazalis R, Daydé J (2008) Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci 48:700–708

    Article  CAS  Google Scholar 

  79. Hoeck JA, Fehr WR, Murphy PA, Welke GA (2000) Influence of genotype and environment on isoflavone contents of soybean. Crop Sci 40:48–51

    Article  CAS  Google Scholar 

  80. Lee SJ, Yan W, Ahn JK, Chung IM (2003) Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Res 81:181–192

    Article  Google Scholar 

  81. Hrazdina G, Wagner GJ (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys 237:88–100

    Article  CAS  PubMed  Google Scholar 

  82. Eldridge AC, Kwolek WF (1983) Soybean isoflavones: effect of environment and variety on composition. J Agric Food Chem 31:394–396

    Article  CAS  PubMed  Google Scholar 

  83. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  84. Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  PubMed  Google Scholar 

  85. Yi J, Derynck MR, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010) A single repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J 62:1019–1034

    CAS  PubMed  Google Scholar 

  86. Dhaubhadel S, Li X (2010) A new client for 14-3-3 proteins: GmMYB176, an R1 MYB transcription factor. Plant Signal Behav 5:1–3

    Article  Google Scholar 

  87. Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA 104:13839–13844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Paul AL, Folta KM, Ferl RJ (2008) 14-3-3 proteins, red light and photoperiodic flowering. Plant Signal Behav 3:511–515

    Article  PubMed Central  PubMed  Google Scholar 

  89. Schoonheim PJ, Costa Pereira DD, De Boer AH (2009) Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32:439–447

    Article  CAS  PubMed  Google Scholar 

  90. Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14 Suppl:S339–354

    PubMed  Google Scholar 

  91. Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot 98:965–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Muslin AJ, Tanner JW, Allen PM (1996) Interaction of 14-3-3 with signalling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  CAS  PubMed  Google Scholar 

  93. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91:961–971

    Article  CAS  PubMed  Google Scholar 

  94. Aitken A (2006) 14-3-3 proteins: a historic overview. Sem Cancer Biol 16:162–172

    Article  CAS  Google Scholar 

  95. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  96. Li X, Dhaubhadel S (2011) Soybean 14-3-3 gene family: identification and molecular characterization. Planta 233:569–582

    Article  CAS  PubMed  Google Scholar 

  97. Li X, Chen L, Dhaubhadel S (2012) 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean. Plant J 71:239–250

    Article  CAS  PubMed  Google Scholar 

  98. Britz SJ, Schomburg CJ, Kenworthy WJ (2010) Isoflavones in seeds of field-grown soybean: variation among genetic lines and environmental effects. J Am Oil Chem Soc 88:827–832

    Article  CAS  Google Scholar 

  99. Gutierrez-Gonzalez J, Wu X, Gillman J, Lee J-D, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen H, Sleper D (2010) Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biol 10:105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K (1995) Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 43:1184–1192

    Article  CAS  Google Scholar 

  101. Vyn TJ, Yin XH, Bruulsema TW, Jackson CJC, Rajcan I, Brouder SM (2002) Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. J Agric Food Chem 50:3501–3506

    Article  CAS  PubMed  Google Scholar 

  102. Gutierrez-Gonzalez JJ, Guttikonda S, Aldrich DL, Tran LSP, Zhong R, Yu O, Nguyen HT, Sleper DA (2010) Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol 51:936–948

    Article  CAS  PubMed  Google Scholar 

  103. Kirakosyan A, Kaufman P, Nelson RL, Kasperbauer MJ, Duke JA, Seymour E, Chang SC, Warber S, Bolling S (2005) Isoflavone levels in five soybean (Glycine max) genotypes are altered by phytochrome-mediated light treatments. J Agric Food Chem 54:54–58

    Article  CAS  Google Scholar 

  104. Kim S-H, Jung W-S, Ahn J-K, Kim J-A, Chung I-M (2005) Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, CO2 level and N application. J Sci Food Agric 85:2557–2566

    Article  CAS  Google Scholar 

  105. Kitamura K, Igita K, Kikuchi A, Kudou S, Okubo K (1991) Low isoflavone content in some early maturing cultivars, so-called summer-type soybeans (Glycine max (L.) Merrill). Jpn J Breed 41:651–654

    Article  Google Scholar 

  106. Lozovaya VV, Lygin AV, Ulanov AV, Nelson RL, Daydé J, Widholm JM (2005) Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci 45:1934–1940

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Dhaubhadel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dastmalchi, M., Dhaubhadel, S. (2014). Soybean Seed Isoflavonoids: Biosynthesis and Regulation. In: Jetter, R. (eds) Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-04045-5_1

Download citation

Publish with us

Policies and ethics