Skip to main content

MRI-Based Skeletal Hand Movement Model

  • Chapter
  • First Online:
The Human Hand as an Inspiration for Robot Hand Development

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 95))

Abstract

The kinematics of the human hand is optimal with respect to force distribution during pinch as well as power grasp, reducing the tissue strain when exerting forces through opposing fingers and optimising contact faces. Quantifying this optimality is of key importance when constructing biomimetic robotic hands, but understanding the exact human finger motion is also an important asset in, e.g. tracking finger movement during manipulation. The goal of the method presented here is to determine the precise orientations and positions of the axes of rotation of the finger joints by using suitable magnetic resonance imaging (MRI) images of a hand in various postures. The bones are segmented from the images, and their poses are estimated with respect to a reference posture. The axis orientations and positions are fitted numerically to match the measured bone motions. Eight joint types with varying degrees of freedom are investigated for each joint, and the joint type is selected by setting a limit on the rotational and translational mean discrepancy. The method results in hand models with differing accuracy and complexity, of which three examples, ranging from 22 to 33 DoF, are presented. The ranges of motion of the joints show some consensus and some disagreement with data from literature. One of the models is published as an implementation for the free OpenSim simulation environment. The mean discrepancies from a hand model built from MRI data are compared against a hand model built from optical motion capture data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    voxelvolume pixel” = basic volume element of a 3-D image; analogous to pixel in 2-D images.

Abbreviations

MC:

Metacarpal bone

PP:

Proximal phalanx

PM:

Medial phalanx

PD:

Distal phalanx

CMC:

Carpometacarpal joint

IMC:

Intermetacarpal joint

MCP:

Metacarpophalangeal joint

PIP:

Proximal interphalangeal joint

DIP:

Distal interphalangeal joint

IP1:

Thumb interphalangeal joint

DoF:

Degree(s) of freedom

LOOCV:

Leave-one-out cross-validation

MRI:

Magnetic resonance imaging

MoCap:

(Optical) motion capture

References

  1. M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, U. Hagn, R. Haslinger, H. Höppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wüsthoff, G. Hirzinger, The DLR hand arm system, in 2011 IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  2. M. Grebenstein, M. Chalon, G. Hirzinger, R. Siegwart, A method for hand kinematics designers—7 billion perfect hands, in Proceedings of 1st International Conference on Applied Bionics and Biomechanics (2010)

    Google Scholar 

  3. Y. Youm, T.E. Gillespie, A.E. Flatt, B.L. Sprague, Kinematic investigation of normal MCP joint. J. Biomech. 11, 109–118 (1978)

    Article  Google Scholar 

  4. K.N. An, E.Y. Chao, I.W.P. Cooney, R.L. Linscheid, Normative model of human hand for biomechanical analysis. J. Biomech. 12, 775–788 (1979)

    Article  Google Scholar 

  5. B. Buchholz, T.J. Armstrong, S.A. Goldstein, Anthropometric data for describing the kinematics of the human hands. Ergonomics 35(3), 261–273 (1992)

    Article  Google Scholar 

  6. A. Hollister, W.L. Buford, L.M. Myers, D.J. Giurintano, A. Novick, The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10, 454–460 (1992)

    Article  Google Scholar 

  7. A. Hollister, D.J. Giurintano, W.L. Buford, L.M. Myers, A. Novick, The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320, 188–193 (1995)

    Google Scholar 

  8. J.L. Sancho-Bru, A. Pérez-González, M. Vergara-Monedero, D. Giurintano, A 3-D dynamic model of human finger for studying free movements. J. Biomech. 34, 1491–1500 (2001)

    Article  Google Scholar 

  9. G.S. Rash, P. Belliappa, M.P. Wachowiak, N.N. Somia, A. Gupta, A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension. J. Biomech. 32(12), 1337–1341 (1999)

    Article  Google Scholar 

  10. L.-C. Kuo, F.-C. Su, H.-Y. Chiu, C.-Y. Yu, Feasibility of using a video-based motion analysis system for measuring thumb kinematics. J. Biomech. 35, 1499–1506 (2002)

    Article  Google Scholar 

  11. X. Zhang, L. Sang-Wook, P. Braido, Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement. J. Biomech. 36, 1097–1102 (2003)

    Article  Google Scholar 

  12. P. Cerveri, N. Lopomo, A. Pedotti, G. Ferrigno, Derivation of centers of rotation for wrist and fingers in a hand kinematic model: Methods and reliability results. Ann. Biomed. Eng. 33, 402–412 (2005)

    Article  Google Scholar 

  13. L.Y. Chang, N.S. Pollard, Constrained least-squares optimization for robust estimation of center of rotation. J. Biomech. 40(6), 1392–1400 (2007)

    Article  Google Scholar 

  14. L.Y. Chang, N.S. Pollard, Robust estimation of dominant axis of rotation. J. Biomech. 40(12), 2707–2715 (2007)

    Article  Google Scholar 

  15. L.Y. Chang, N.S. Pollard, Method for determining kinematic parameters of the in vivo thumb carpometaracpal joint. IEEE Trans. Biomed. Eng. 55(7), 1879ff (2008)

    Google Scholar 

  16. Dexmart, Deliverable D1.1 kinematic model of the human hand, Dexmart, Technical Report, 2009

    Google Scholar 

  17. J.H. Ryu, N. Miyata, M. Kouchi, M. Mochimaru, K.H. Lee, Analysis of skin movement with respect to flexional bone motion using mr images of a hand. J. Biomech. 39, 844–852 (2006)

    Article  Google Scholar 

  18. K. Oberhofer, K. Mithraratne, N. Stott, I. Anderson, Error propagation from kinematic data to modeled muscle-tendon lengths during walking. J. Biomech. 42, 77–81 (2009)

    Article  Google Scholar 

  19. N. Miyata, M. Kouchi, M. Mochimaru, T. Kurihaya, Finger joint kinematics from MR images, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2005)

    Google Scholar 

  20. M. Grebenstein, P. van der Smagt, Antagonism for a highly anthropomorphic hand-arm system. Adv. Robot. 22(1), 39–55 (2008)

    Article  Google Scholar 

  21. S.L. Delp, F. Anderson, S. Arnold, P.J. Loan, A. Habib, C. John, E. Guendelman, D. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)

    Google Scholar 

  22. R.V. Gonzales, T.S. Buchanan, S.L. Delp, How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30, 705–712 (1997)

    Article  Google Scholar 

  23. A. Kapandji, Cotation clinique de l’opposition et de la contre-opposition du pouce [clinical test of opposition and counter-opposition of the thumb]. Ann. Chir. Main. 5(1), 67–73 (1986)

    Article  Google Scholar 

  24. U. Hillenbrand, Non-parametric 3D shape warping, in Proceedings International Conference on Pattern Recognition (ICPR) (2010)

    Google Scholar 

  25. U. Hillenbrand, Consistent parameter clustering: definition and analysis. Pattern Recogn. Lett. 28, 1112–1122 (2007)

    Google Scholar 

  26. U. Hillenbrand, A. Fuchs, An experimental study of four variants of pose clustering from dense range data. Comput. Vis. Image Underst. 115(10), 1427–1448 (2011). http://www.sciencedirect.com/science/article/pii/S1077314211001445

  27. B.K. Horn, Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  28. K. Fukunaga, L.D. Hostetler, The estimation of a gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  30. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  31. A. Kapandji, The Physiology of the Joints (Churchill Livingstone, Edinburgh, 1998)

    Google Scholar 

  32. Wikipedia, Hand (2009) http://en.wikipedia.org/wiki/Hand

  33. Wikipedia, Hinge joint (2006) http://en.wikipedia.org/wiki/Hinge_joint

Download references

Acknowledgments

The authors would like to thank Karolina Stonawska for the tedious work of segmenting the bones. This project was partly funded by the EU project The Hand Embodied (FP7-ICT-248587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Stillfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stillfried, G., Hillenbrand, U., Settles, M., van der Smagt, P. (2014). MRI-Based Skeletal Hand Movement Model. In: Balasubramanian, R., Santos, V. (eds) The Human Hand as an Inspiration for Robot Hand Development. Springer Tracts in Advanced Robotics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-03017-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03017-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03016-6

  • Online ISBN: 978-3-319-03017-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics