Skip to main content

Multi-Class Support Vector Machine

  • Chapter
  • First Online:
Support Vector Machines Applications

Abstract

Support vector machine (SVM) was initially designed for binary classification. To extend SVM to the multi-class scenario, a number of classification models were proposed such as the one by Crammer and Singer (J Mach Learn Res 2:265–292, 2001). However, the number of variables in Crammer and Singer’s dual problem is the product of the number of samples (l) by the number of classes (k), which produces a large computational complexity. This chapter sorts the existing classical techniques for multi-class SVM into the indirect and direct ones and further gives the comparison for them in terms of theory and experiments. Especially, this chapter exhibits a new Simplified Multi-class SVM (SimMSVM) that reduces the size of the resulting dual problem from l × k to l by introducing a relaxed classification error bound. The experimental discussion demonstrates that the SimMSVM approach can greatly speed up the training process, while maintaining a competitive classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets.html (2007)

  2. Baldi, P., Pollastri, G.: A machine-learning strategy for protein analysis. IEEE Intell. Syst. 17(2), 28–35 (2002)

    Google Scholar 

  3. Bartlett, P., Jordan, M., McAuliffe, J.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101, 138–156 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bredensteiner, E., Bennett, K.: Multicategory classification by support vector machines. Comput. Optim. Appl. 12, 53–79 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. 6(1), 1–6 (2004)

    Article  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2001)

    Google Scholar 

  8. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  9. Fung, G., Mangasarian, O.: Proximal support vector machine classifiers. In: Provost, F., Srikant, R. (eds.) Proceedings KDD-2001: Knowledge Discovery and Data Mining, August 26–29, 2001, San Francisco, CA, pp. 77–86. Asscociation for Computing Machinery, New York (2001)

    Google Scholar 

  10. Fung, G., Mangasarian, O.: Multicategory proximal support vector machine classifiers. Mach. Learn. 59(1–2), 77–97 (2005)

    Article  MATH  Google Scholar 

  11. Ganapathiraju, A., Hamaker, J., Picone, J.: Applications of support vector machines to speech recognition. IEEE Trans. Signal Process. 52(8), 2348–2355 (2004)

    Article  Google Scholar 

  12. Guermeur, Y.: Combining discriminant models with new multi-class svms. Pattern Anal. Appl. 5(2), 168–179 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. He, X., Wang, Z., Jin, C., Zheng, Y., Xue, X.Y.: A simplified multi-class support vector machine with reduced dual optimization. Pattern Recognit. Lett. 33, 71–82 (2012)

    Article  Google Scholar 

  14. Hsu, C., Lin, C.: A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  Google Scholar 

  15. Hsu, C., Lin, C.: A simple decomposition method for support vector machines. Mach. Learn. 46, 291–314 (2002)

    Article  MATH  Google Scholar 

  16. Hsu, C., Lin, C.: Bsvm. http://mloss.org/software/view/62/ (2008)

  17. Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  18. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using support vector machines and hierarchical clustering. VLDB J. 16(4), 507–521 (2007)

    Article  Google Scholar 

  19. King, R., Feng, C., Sutherland, A.: Statlog: comparison of classification algorithms on large real-world problems. Appl. Artif. Intell. 9(3), 289–333 (1995)

    Article  Google Scholar 

  20. Knerr, S., Personnaz., L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training neural network. In: Fogelman, J. (ed.) Neurocomputing: Algorithms, Architectures and Applications. Springer, Berlin (1990)

    Google Scholar 

  21. Kreßel, U.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  22. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines. In: Wegman, E., Braverman, A., Goodman, A., Smyth, P. (eds.) Computing Science and Statistics, vol. 33, pp. 498–512. Interface Foundation of North America, Inc., Fairfax Station, VA, USA (2002)

    Google Scholar 

  23. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. J. Am. Stat. Assoc. 99, 67–81 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu, Y.: Fisher consistency of multicategory support vector machines. In: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS-07) (2007)

    Google Scholar 

  25. Mangasarian, O., Musicant, D.: Successive overrelaxation for support vector machines. IEEE Trans. Neural Netw. 10(5), 1032–1037 (1999)

    Article  Google Scholar 

  26. Mangasarian, O., Musicant, D.: Lagrangian support vector machines. J. Mach. Learn. Res. 1, 161–177 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Mori, S., Suen, C., Yamamoto, K.: Historical review of OCR research and development, pp. 244–273. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  28. Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin dags for multiclass classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  29. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  31. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  32. Suykens, J., Vandewalle, J.: Multiclass least squares support vector machines. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN99). World Scientific, Washington, DC (1999)

    Google Scholar 

  33. Szedmak, S., Shawe-Taylor, J., Saunders, C., Hardoon, D.: Multiclass classification by l1 norm support vector machine. In: Pattern Recognition and Machine Learning in Computer Vision Workshop (2004)

    Google Scholar 

  34. Tang, Y., Zhang, Y., Chawla, N., Krasser, S.: Svms modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. Part B 39(1), 281–288 (2009)

    Article  Google Scholar 

  35. Tax, D., Duin, R.: Data domain description using support vectors. In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 251–256 (1999)

    Google Scholar 

  36. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  37. Wang, L., Shen, X.: On l1-norm multiclass support vector machines: methodology and theory. J. Am. Stat. Assoc. 102, 583–594 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Weston, J., Watkins, C.: Multi-class support vector machines. In: Proceedings of ESANN99 (1999)

    Google Scholar 

  39. Xia, X., Li, K.: A sparse multi-class least-squares support vector machine. In: IEEE International Symposium on Industrial Electronics, 2008 (ISIE 2008), pp. 1230–1235 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Xue, X. (2014). Multi-Class Support Vector Machine. In: Ma, Y., Guo, G. (eds) Support Vector Machines Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-02300-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02300-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02299-4

  • Online ISBN: 978-3-319-02300-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics