Skip to main content

Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Tunneling of Clusters through Repulsive Barriers

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2013)

Abstract

A model for quantum tunnelling of a cluster comprising A identical particles, coupled by oscillator-type potential, through short-range repulsive potential barriers is introduced for the first time in the new symmetrized-coordinate representation and studied within the s-wave approximation. The symbolic-numerical algorithms for calculating the effective potentials of the close-coupling equations in terms of the cluster wave functions and the energy of the barrier quasistationary states are formulated and implemented using the Maple computer algebra system. The effect of quantum transparency, manifesting itself in nonmonotonic resonance-type dependence of the transmission coefficient upon the energy of the particles, the number of the particles A = 2,3,4, and their symmetry type, is analyzed. It is shown that the resonance behavior of the total transmission coefficient is due to the existence of barrier quasistationary states imbedded in the continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pen’kov, F.M.: Quantum transmittance of barriers for composite particles. JETP 91, 698–705 (2000)

    Article  Google Scholar 

  2. Pijper, E., Fasolino, A.: Quantum surface diffusion of vibrationally excited molecular dimers. J. Chem. Phys. 126, 014708-1–014708-10 (2007)

    Google Scholar 

  3. Bondar, D.I., Liu, W.-K., Ivanov, M.Y.: Enhancement and suppression of tunneling by controlling symmetries of a potential barrier. Phys. Rev. A 82, 052112-1–052112-9 (2010)

    Google Scholar 

  4. Shegelski, M.R.A., Pittman, J., Vogt, R., Schaan, B.: Time-dependent trapping of a molecule. European Phys. J. Plus 127, 17-1–17-13 (2012)

    Article  Google Scholar 

  5. Ershov, S.N., Danilin, B.V.: Breakup of two-neutron halo nuclei. Phys. Part. Nucl. 39, 1622–1720 (2008)

    Article  Google Scholar 

  6. Nesterov, A.V., Arickx, F., Broeckhove, J., Vasilevsky, V.S.: Three-cluster description of properties of light nuclei with neutron and proton access within the algebraic version of the resonating group method. Phys. Part. Nucl. 41, 1337–1426 (2010)

    Article  Google Scholar 

  7. Hofmann, H.: Quantummechanical treatment of the penetration through a two-dimensional fission barrier. Nucl. Phys. A 224, 116–139 (1974)

    Article  Google Scholar 

  8. Krappe, H.J., Möhring, K., Nemes, M.C., Rossner, H.: On the interpretation of heavy-ion sub-barrier fusion data. Z. Phys. A 314, 23–31 (1983)

    Article  Google Scholar 

  9. Cwiok, S., Dudek, J., Nazarewicz, W., Skalski, J., Werner, T.: Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed Woods-Saxon potential with applications to the two-centre-type nuclear problems. Comput. Phys. Communications 46, 379–399 (1987)

    Article  Google Scholar 

  10. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999)

    Article  MATH  Google Scholar 

  11. Zagrebaev, V.I., Samarin, V.V.: Near-barrier fusion of heavy nuclei: coupling of channels. Phys. Atom. Nucl. 67, 1462–1477 (2004)

    Article  Google Scholar 

  12. Ahsan, N., Volya, A.: Quantum tunneling and scattering of a composite object reexamined. Phys. Rev. C 82, 064607-1–064607-19 (2010)

    Article  Google Scholar 

  13. Shotter, A.C., Shotter, M.D.: Quantum mechanical tunneling of composite particle systems: Linkage to sub-barrier nuclear reactions. Phys. Rev. C 83, 054621-1–054621-11 (2011)

    Google Scholar 

  14. Shilov, V.M.: Sub-barrier fusion of intermediate and heavy nuclear systems. arXiv:1012.3683 [nucl-th] Phys. Atom. Nucl. 75, 485–490 (2012)

    Google Scholar 

  15. Chuluunbaatar, O., Gusev, A.A., Derbov, V.L., Krassovitskiy, P.M., Vinitsky, S.I.: Channeling problem for charged particles produced by confining environment. Phys. Atom. Nucl. 72, 768–778 (2009)

    Article  Google Scholar 

  16. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I.: Computational scheme for calculating reflection and transmission matrices, and corresponding wave functions of multichannel scattering problems. In: Uvarova, L.A. (ed.) Proc. Second International Conference “The Modeling of Non-linear Processes and Systems”, Yanus, Moscow, pp. 978–975 (2011)

    Google Scholar 

  18. Gusev, A., Vinitsky, S., Chuluunbaatar, O., Rostovtsev, V., Hai, L., Derbov, V., Góźdź, A., Klimov, E.: Symbolic-numerical algorithm for generating cluster eigenfunctions: identical particles with pair oscillator interactions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 155–168. Springer, Heidelberg (2013)

    Google Scholar 

  19. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A., Samoilov, V.N., Tupikova, T.V., Chuluunbaatar, O.: A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem. Programming and Computer Software 33, 105–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bunge, C.F.: Fast eigensolver for dense real-symmetric matrices. Comput. Phys. Communications 138, 92–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 179, 685–693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0 - New version of a program for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the coupled-channel adiabatic approach, Program library “JINRLIB”, http://wwwinfo.jinr.ru/programs/jinrlib/kantbp/indexe.html

  23. de Carvalho, C.A.A., Nussenzweig, H.M.: Time delay. Phys. Rept. 364, 83–174 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Vinitsky, S. et al. (2013). Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Tunneling of Clusters through Repulsive Barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2013. Lecture Notes in Computer Science, vol 8136. Springer, Cham. https://doi.org/10.1007/978-3-319-02297-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02297-0_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02296-3

  • Online ISBN: 978-3-319-02297-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics