Skip to main content

Lithospheric Features of the São Francisco Craton

  • Chapter
  • First Online:
São Francisco Craton, Eastern Brazil

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

Studying the thick lithosphere of cratons is important to help understand their formation and the mechanisms for their preservation. We present a synthesis of the information available for the deep structure in Eastern Brazil, from seismological and gravity data, to characterize the São Francisco Craton (SFC) and help better define its lateral boundaries at depth. Crustal thicknesses of the SFC, known mainly from receiver function studies, range from 38 to 42 km, except for a localized thickening (up to 44 km) in the northern part, and crustal thinning towards the Atlantic continental margin in Bahia state. Overall, the crust is slightly thicker near the geologically-defined surface boundaries (40–42 km) and slightly thinner in the center (38–40 km), which is consistent with generally low Bouguer anomalies and high topography to the East and to the West of the craton probably defining the suture zones during the Gondwana amalgamation. Modeling of gravity anomalies with some seismic constraints indicates a relatively low-density lithospheric mantle for the SFC, despite higher Pn velocity, which is consistent with a Fe-depleted, buoyant lithosphere, which helps preserve the cratons’s root. Surface-wave continental-scale tomography suggested the thickest lithosphere, around 200 km, to be in the Archean southern part of the SFC, consistent with regional P- and S-wave tomography. Both the surface-wave and the body-wave tomographies show high upper mantle velocities beneath the Brasilia fold belt, next to the SFC’s surface limits, which is interpreted as a continuation at depth of the craton’s lithosphere, beneath the low-grade external metamorphic domain of the Brasilia fold belt. Analysis of the SFC seismicity shows that most earthquakes now occur on shallow (<2 km) normal faults formed during the formation of the Brasiliano continental margin, now reactivated under the present E–W compressional stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agurto-Detzel, H., M, Assumpção, M. Bianchi, and M. Pirchiner, 2015a. Intraplate seismicity in mid-plate South America: correlations with geophysical lithospheric parameters. Geol. Soc. London, Special Publication in “Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions”. 432, first published on November 2, 2015, doi:10.1144/SP432.5.

  • Agurto-Detzel, H., M. Assumpção, C. Ciardelli, D.F. Albuquerque, L.V. Barros, G.S.L., França, 2015b. The 2012–2013 Montes Claros earthquake series in the São Francisco Craton, Brazil: new evidence for non-uniform intraplate stresses in mid-plate South America. Geophys. J. Int., 200, 216–226. Doi:10.1093/gji/ggu333.

  • Azevedo, P.A., M.P. Rocha, J.E. Soares, R.A. Fuck, 2015. Thin lithosphere between the Amazon and São Francisco Cratons, in Central Brazil, revealed by seismic P-wave tomography. Geophysical J. Int., 201, 61–69. doi:10.1093/gji/ggv003

  • Artemieva, I.M., 2006. Global 1°x1° thermal model TC1 for the continental lithosphere: Implications for the lithosphere secualr evolution. Tectonophysics, 416, 245–277.

    Google Scholar 

  • Artemieva, I.M., 2009. The continental lithosphere: reconciling thermal, seismic and petrological data. Lithos, 109, 23–46.

    Google Scholar 

  • Artemieva, I.M., & R. Meissner, 2012. Crustal thickness controlled by plate tectonics: a review of crust-mantle interactions processes illustrated by European examples. Tectonophys., 530–531, 18–49.

    Google Scholar 

  • Assumpção, M., 1998. Focal mechanisms of small earthquakes in SE Brazilian shield: a test of stress models of the South American plate. Geophys. J. Int., 133, 490–498.

    Google Scholar 

  • Assumpção, M., D. James, A. Snoke, 2002. Crustal thicknesses in SE Brazilian shield by receiver function analysis: implications for isostatic compensation. J. Geophys. Res., 107(B1), ESE2-1—ESE2-14, 2006, doi:10.1029/2001JB000422.

  • Assumpção, M., M. Schimmel, C. Escalante, M. Rocha, J.R. Barbosa & Lucas V. Barros, 2004. Intraplate seismicity in SE Brazil: Stress concentration in lithospheric thin spots. Geophysical J. Int. , 159, 390–399. doi:10.1111/j.1365-246X.2004.02357.x

  • Assumpção, M., M.B. Bianchi, J. Julià, F.L Dias; G.S. França, R.M. Nascimento, S. Drouet, C.G. Pavão, D.F. Albuquerque, A.V. Lopes, 2013a. Crustal thickness map of Brazil: Data compilation and main features. J. South Am. Earth Sci., 43, 74–85. doi:10.1016/j.jsames.2012.12.009.

  • Assumpção, M., M. Feng, A. Tassara, J. Julià, 2013b. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave dispersion. Tectonophys., 609, 82–96, doi:10.1016/j.tecto.2012.11.014.

  • Assumpção, M., J. Ferreira, L. Barros, F.H. Bezerra, G.S. França, J.R. Barbosa, E. Menezes, L.C. Ribotta, M. Pirchiner, A. Nascimento, J.C. Dourado, 2014. Intraplate Seismicity in Brazil. In Intraplate Earthquakes, chapter 3, ed. P. Talwani, Cambridge U.P., ISBN 978-1-107-04038-0.

    Google Scholar 

  • Berrocal, J., Y. Marangoni, N.C. Sá, R. Fuck, J.E.P. Soares, E. Dantas, F. Perosia, and C. Fernandes, 2004. Deep seismic refraction and gravity crustal model and tectonic deformation in Tocantins Province, Central Brazil, Tectonophysics, 388, 187–199.

    Google Scholar 

  • Caproni, N., J. Armelin, 1990. Instrumentação das escavações subterrâneas da UHE Serra da Mesa. In Simpósio sobre Instrumentação Geotécnica de Campo - SINGEO-90, Assoc.Bras.Geol.Eng., São Paulo, vol 1, p 249–257.

    Google Scholar 

  • Carvalho, J.M., L.V. Barros, and J. Zahradnik, 2016. Focal mechanisms and moment magnitudes of micro-earthquakes in Central Brazil by waveform inversion with quality assessment and inference of the local stress field. J. South Am. Earth Sci., 71, 333–343, doi:10.1016/j.jsames.2015.07.020

  • Chimpliganond, C., M. Assumpção, M. von Huelsen & G.S. França, 2010. The intracratonic Caraíbas-Itacarambi earthquake of December 09, 2007 (4.9 mb), Minas Gerais State, Brazil. Tectonophysics, 480, 48–56.

    Google Scholar 

  • Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100 (B6), 9761–9788.

    Google Scholar 

  • Cordani, U.G., B.B. Brito Neves, R.A. Fuck, R. Porto, A.T. Filho, and F.M.B. Cunha, 1984. Estudo preliminar de integração do pré-Cambriano com os eventos tectônicos das bacias sedimentares brasileiras. Rev. Ciência Técnica Petróleo, 15, Petrobrás, CENPES, Rio de Janeiro.

    Google Scholar 

  • Durrheim, R.J., Mooney, W.D., 1991. Archean and Proterozoic crustal evolution: Evidence from crustal seismology. Geology, 19, 606–609.

    Google Scholar 

  • Durrheim, R.J., Mooney, W.D., 1994. Evolution of the Precambrian lithosphere: seismological and geophysical constraints. J. Geophys. Res. 99 (B8), 15359–15374.

    Google Scholar 

  • Feng, M., S. Van der Lee and M. Assumpção, 2007. Upper mantle structure of South America from joint inversion of waveforms and fundamental-mode group velocities of Rayleigh waves. J. Geophys. Res., 112, B04312, doi:10.1029/2006JB004449.

  • Gibson, S.A., Thompson, R.N., Weska, R.K., Dickin, A.P. & Leonardos, O.H., 1997. Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil, Contrib. Mineral Petrol., 126, 303–314.

    Google Scholar 

  • Giese, P., J. Schutte, 1975. Preliminary report on the results of seismic measurements in the Brazilian coastal mountains. Unpublished Report, Free Univ. of Berlin, Berlin, Germany.

    Google Scholar 

  • Guimarães, S.N.P., D. Ravat, & V.M. Hamza, 2014. Combined use of the centroid and matched filtering spectral magnetic methods in determining thermomagnetic characteristics of the crust in the structural provinces of Central Brazil. Tectonophys., 624–625, 87–99 , doi:10.1016/j.tecto.2014.01.025

  • Hawkesworth, C.J., Kempton, P.D., Rogers, N.W., Ellam, R.M., van Calsteren, P.W., 1990. Continental mantle lithosphere, and shallow level enrichment processes in the earth’s mantle. Earth Planet. Sci. Lett. 96, 256–268.

    Google Scholar 

  • Heit, B., F. Sodoudi, X. Yuan, M. Bianchi, and R. Kind, 2007. An S receiver function analysis of the lithospheric structure in South America. Geophys.Res.Lett., 34, L14307, doi: 10.1029/2007GL030317.

  • Julià, J., M. Assumpção & M.P. Rocha, 2008. Deep crustal structure of the Paraná Basin from receiver functions and Rayleigh-wave dispersion: Evidence for a fragmented cratonic root. J. Geophys. Res., 113, B08318, doi:10.1029/2007JB005374.

  • Knize, S., Berrocal, J., Martins, D., 1984. Modelo Preliminar de Velocidades Sismicas da Crosta Atraves de Explosões Locais Registradas Pela Rede Sismográfica de Sobradinho,BA. Rev. Bras. Geoc., 2, 95–104.

    Google Scholar 

  • Koosah M., Vidotti R., Soares J.E.P., Fuck R.A. 2007. Gravimetric and seismic data integration in a 2D forward gravimetric modeling for the crust and lid mantle beneath northern Brasilia Belt. In: SBGf, Internat. Cong. of the Brazilian Geophys. Soc., 10th, Rio de Janeiro, Expanded Abstract Volume, CD-ROM.

    Google Scholar 

  • Magalhães, F.S., 1999. Tensões regionais e locais: Casos no território brasileiro e padrão geral. PhD Thesis, Escola de Engenharia de São Carlos, USP, 225 pp.

    Google Scholar 

  • McKenzie, D., M.C. Daly, and K. Priestley, 2015. The lithospheric structure of Pangea. Geology, doi : 10.1130/G36819.1

  • Mooney, W.D., J. Ritsema, and Y. Hwang (2012), Crustal seismicity and maximum earthquake magnitudes (Mmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere, Earth Planet. Sci. Lett., 357–358, 78–83, doi:10.1016/j.epsl.2012.08.032.

  • Rocha, M.P., Schimmel, M., and Assumpção, M., 2011. Upper-mantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography. Geophysical Journal International, 184, 268–286, doi:10.1111/j.1365-246X.2010.04831.x.

  • Saadi, A., M.N. Machette, K.M. Haller, R.L. Dart, L.-A. Bradley, and A.M.P.D. Souza, 2002. Map and Database of Quaternary Faults and Lineaments in Brazil. USGS Open-File Report 02-230 (2002).

    Google Scholar 

  • Schimmel, M., M. Assumpção & J. VanDecar, 2003. Upper mantle seismic velocity structure beneath SE Brazil from P- and S-wave travel time inversions. J. Geophys. Res., 108(B4), 2191, doi:10.129/2001JB000187.

  • Soares, J.E., J. Berrocal, R.A. Fuck, W.D. Mooney, and D.B.R. Ventura (2006), Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study, J. Geophys. Res., 111, B12302, doi:10.1029/2005JB003769.

  • Uhlein, A., R.R. Trompette and M. Egydio-Silva, 1998. Proterozoic rifting and closure, SE border of the São Francisco Craton, Brazil. J. South Am. Earth Sci., 11(2), 191–203.

    Google Scholar 

  • Vauchez, A., A. Tommasi, & M. Egydio-Silva, 1994. Self-indentation of a heterogeneous continental lithosphere. Geology, 22, 967–970.

    Google Scholar 

  • Ventura, D.B.R., J.E.P. Soares, R.A. Fuck & L.C.C. Caridade, 2011. Caracterização sísmica e gravimétrica da litosfera sob a linha de refração sísmica profunda de Porangatu, Província Tocantins, Brasil Central. Rev. Bras. Geoc., 41(1), 130–140.

    Google Scholar 

Download references

Acknowledgments

We thank Petrobras Geotectonic Program for supporting the Brazilian Seismographic Network and the Transbrasiliano Project, which allowed new crustal thickness estimates and better tomographic coverage at recently deployed stations. We used results from several temporary experiments carried out with instruments from the Pool of Geophysical Equipment (PEG-BR, National Observatory, Rio de Janeiro). We also thank FAPDF and INCT (Estudos Tectônicos) for supporting geophysical projects in central Brazil. Work carried out with CNPq Grant 30.6547/2013-9 (M.A.) and CAPES PhD scholarship (P.A.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Assumpção .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Assumpção, M., Azevedo, P.A., Rocha, M.P., Bianchi, M.B. (2017). Lithospheric Features of the São Francisco Craton. In: Heilbron, M., Cordani, U., Alkmim, F. (eds) São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-01715-0_2

Download citation

Publish with us

Policies and ethics