Skip to main content

Flow of Nematic Liquid Crystals in a Microfluidic Environment

  • Chapter
  • First Online:
Topological Microfluidics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The flow of anisotropic liquid crystals in functionalized microchannels is uniquely distinct from its isotropic counterpart. The gamut of interesting phenomena presented in this chapter can be generalized as the effects of the surface-induced ordering on the flow behaviour, and the effects of flow on the surface-induced ordering of the LC phase. In this chapter, we shall see how microfluidics of anisotropic liquid crystals provide functional features that are typically not achievable in flows of isotropic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M. Whitesides, Nature 442, 368 (2006)

    Article  ADS  Google Scholar 

  2. D.R. Meldrum, M.R. Holl, Science 297, 1197 (2002)

    Article  Google Scholar 

  3. J. GlĂĽckstad, Nat. Mater. 3, 9 (2004)

    Article  ADS  Google Scholar 

  4. A.B. Subramaniam, M. Abkarian, H.A. Stone, Nat. Mater. 4, 553 (2005)

    Article  ADS  Google Scholar 

  5. A. Terray, J. Oakey, D.W.M. Marl, Science 296, 1841 (2002)

    Article  ADS  Google Scholar 

  6. H. Bruus, Theoretical Microfluidics (Oxford University Press, Oxford, 2008)

    Google Scholar 

  7. A. Groisman, V. Steinberg, Nature 405, 53 (2000)

    Article  ADS  Google Scholar 

  8. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Science 295, 647 (2002)

    Article  ADS  Google Scholar 

  9. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2011)

    Article  ADS  Google Scholar 

  10. J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Lab Chip 9, 1850 (2009)

    Article  Google Scholar 

  11. S.E. Chung, W. Park, S. Shin, S.A. Lee, S. Kwon, Nat. Mater. 7, 587 (2008)

    Article  ADS  Google Scholar 

  12. P. Abbyad, R. Dangla, A. Alexandrou, C.N. Baroud, Lab Chip 11, 813 (2011)

    Article  Google Scholar 

  13. M. Miesowicz, Nature 158, 27 (1946)

    Article  ADS  Google Scholar 

  14. F.M. Leslie, Q. J. Mech. Appl. Math. 19, 357 (1966)

    Google Scholar 

  15. F.M. Leslie, Ration. Mech. Anal. 28, 265 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Pieranski, E. Guyon, Phys. Lett. 49A, 237 (1974)

    ADS  Google Scholar 

  17. H. Stark, Phys. Rep. 351, 387 (2001)

    Article  ADS  Google Scholar 

  18. G. Toth, C. Denniston, J.M. Yeomans, Phys. Rev. Lett. 88, 105504 (2002)

    Article  ADS  Google Scholar 

  19. A. Sengupta, U. Tkalec, Ch. Bahr, Soft Matter 7, 6542 (2011)

    Article  ADS  Google Scholar 

  20. A. Sengupta, S. Herminghaus, Ch. Bahr, Appl. Phys. Lett. 101, 164101 (2012)

    Article  ADS  Google Scholar 

  21. A. Sengupta, U. Tkalec, M. Ravnik, J.M. Yeomans, Ch. Bahr, S. Herminghaus, Phys. Rev. Lett. 110, 048303 (2013)

    Article  ADS  Google Scholar 

  22. A. Sengupta, C. Pieper, J. Enderlein, Ch. Bahr, S. Herminghaus, Soft Matter 9, 1937 (2013)

    Article  ADS  Google Scholar 

  23. The Landolt-Börnstein Database, Springer Materials VIII/5A, doi:10.1007/10694796-63 (2003)

  24. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press Inc., New York, 1999)

    Google Scholar 

  25. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. (Taylor & Francis, Boca Raton, 2005), chapter B. III

    Google Scholar 

  26. A.A. Sonin, A. Yethiraj, J. Bechhoefer, B.J. Frisken, Phys. Rev. E 52, 6260 (1995)

    Article  ADS  Google Scholar 

  27. Ch. Gähwiller, Phys. Rev. Lett. 28, 1554 (1972)

    Article  ADS  Google Scholar 

  28. W. Helfrich, J. Chem. Phys. 50, 100 (1969)

    Article  ADS  Google Scholar 

  29. W. Helfrich, J. Chem. Phys. 56, 3187 (1972)

    Article  ADS  Google Scholar 

  30. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955)

    Google Scholar 

  31. K. Negita, J. Chem. Phys. 105, 17 (1996)

    Article  Google Scholar 

  32. G. Toulouse, M. Kleman, J. Phys. Lett. 37, L149 (1976)

    Article  Google Scholar 

  33. V.P. Mineyev, G.E. Volovik, Phys. Rev. B: Solid State 18, 3197 (1978)

    Article  ADS  Google Scholar 

  34. O.D. Lavrentovich, S.S. Rozhkov, Pis’ma. Zh. Eksp. Teor. Fiz. 47, 210 (1988)

    Google Scholar 

  35. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  36. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)

    Google Scholar 

  37. D.R. Link, M. Nakata, Y. Takanishi, K. Ishikawa, H. Takezoe, Phys. Rev. Lett. 87, 195507 (2001)

    Article  ADS  Google Scholar 

  38. S. Zhang, E.M. Terentjev, A.M. Donald, J. Phys. Chem. B 109, 13195 (2005)

    Article  Google Scholar 

  39. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  40. A.B. Nych, D.Y. Reznikov, O.P. Boiko, V.G. Nazarenko, V.M. Pergamenshchik, P. Bos, Eur. Phys. Lett. 81, 16001 (2008)

    Article  ADS  Google Scholar 

  41. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

  42. D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)

    Article  ADS  Google Scholar 

  43. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, Lab Chip 6, 735 (2006)

    Article  Google Scholar 

  44. T. Pfohl, F. Mugele, R. Seemann, S. Herminghaus, Chem. Phys. Chem. 4, 1291 (2003)

    Article  Google Scholar 

  45. P. Nghe, E. Terriac, M. Schneider, Z.Z. Li, M. Cloitre, B. Abecassis, P. Tabeling, Lab Chip 11, 788 (2011)

    Article  Google Scholar 

  46. M.C. Choi, T. Pfohl, Z. Wen, Y. Li, M.W. Kim, J.N. Israelachvili, C.R. Safinya, Proc. Natl. Acad. Sci. U.S.A. 101, 17340 (2004)

    Article  ADS  Google Scholar 

  47. S. Shojaei-Zadeh, S.L. Anna, Langmuir 22, 9986 (2006)

    Article  Google Scholar 

  48. B.D. Hamlington, B. Steinhaus, J.J. Feng, D. Link, M.J. Shelly, A.Q. Shen, Liq. Cryst. 34, 861 (2007)

    Article  Google Scholar 

  49. J. Feng, L.G. Leal, Phys. Fluids 11, 28121 (1999)

    Article  Google Scholar 

  50. C. Denniston, E. Orlandini, J.M. Yeomans, Comput. Theor. Polym. Sci. 11, 389 (2001)

    Article  Google Scholar 

  51. C. Denniston, D. Marenduzzo, E. Orlandini, J.M. Yeomans, Phil. Trans. R. Soc. Lond. A 362, 1745 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. J. Quintas Carou, B.R. Duffy, N.J. Mottram, L.G. Leal, Phys. Fluids 18, 027105 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  53. J.P. Hernandez-Ortiz, B.T. Gettelfinger, J. Moreno-Razo, J.J. de Pablo, J. Chem. Phys. 134, 134905 (2011)

    Article  ADS  Google Scholar 

  54. L. Giomi, L. Mahadevan, B. Chakraborty, M.F. Hagan, Phys. Rev. Lett. 106, 218101 (2011)

    Article  ADS  Google Scholar 

  55. L. Giomi, M.C. Marchetti, Soft Matter 8, 129 (2012)

    Article  ADS  Google Scholar 

  56. P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997)

    Article  Google Scholar 

  57. I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, S. Žumer, Science 313, 954 (2006)

    Article  ADS  Google Scholar 

  58. T. Araki, M. Buscaglia, T. Bellini, H. Tanaka, Nat. Mater. 10, 303 (2011)

    Article  ADS  Google Scholar 

  59. C. Blanc, D. Svenšek, S. Žumer, M. Nobili, Phys. Rev. Lett. 95, 097802 (2005)

    Article  ADS  Google Scholar 

  60. O.D. Lavrentovich, I. Lazo, O.P. Pishnyak, Nature 467, 947 (2010)

    Article  ADS  Google Scholar 

  61. O.P. Pishnyak, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. Lett. 106, 047801 (2011)

    Article  ADS  Google Scholar 

  62. J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 105, 178302 (2010)

    Article  ADS  Google Scholar 

  63. S.A. Jewell, S.L. Cornford, F. Yang, P.S. Cann, J.R. Sambles, Phys. Rev. E 80, 041706 (2009)

    Article  ADS  Google Scholar 

  64. C.J. Holmes, S.L. Cornford, J.R. Sambles, Appl. Phys. Lett. 95, 171114 (2009)

    Article  ADS  Google Scholar 

  65. C.J. Holmes, S.L. Cornford, J.R. Sambles, Phys. Rev. Lett. 104, 248301 (2010)

    Article  ADS  Google Scholar 

  66. Y.-J. Na, T.-Y. Yoon, S. Park, B. Lee, S-D Lee, Chem. Phys. Chem. 11, 101 (2010)

    Google Scholar 

  67. J.G. Cuennet, A.E. Vasdekis, L. De Sio, D. Psaltis, Nat. Phot. 5, 234 (2011)

    Article  Google Scholar 

  68. R. Ondris-Crawford, E.P. Boyko, B.G. Wagner, J.H. Erdmann, S. Žumer, J.W. Doane, J. Appl. Phys. 69, 6380 (1991)

    Article  ADS  Google Scholar 

  69. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 046308 (2002)

    Article  ADS  Google Scholar 

  70. J.L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  71. O.J. Parodi, J. Phys. (Paris) 31, 581 (1970)

    Article  Google Scholar 

  72. K. Skarp, S.T. Lagerwall, B. Stebler, Mol. Cryst. Liq. Cryst. 60, 215 (1980)

    Article  Google Scholar 

  73. A.G. Chmielewski, Mol. Cryst. Liq. Cryst. 132, 339 (1986)

    Article  Google Scholar 

  74. M. Kléman, Points, Lines and Walls. In: Liquid Crystals, Magnetic systems and Various Ordered Media (Wiley-Interscience, New York, 1983)

    Google Scholar 

  75. H. Heuer, H. Kneppe, F. Schneider, Mol. Cryst. Liq. Cryst. 214, 43 (1992)

    Article  Google Scholar 

  76. S. Chono, T. Tsuji, Mol. Cryst. Liq. Cryst. 309, 217 (1998)

    Article  Google Scholar 

  77. T. Araki, H. Tanaka, J. Phys. Condens. Matter 18, 193 (2006)

    Google Scholar 

  78. T. Araki, private communication

    Google Scholar 

  79. H. Stark, D. Ventzki, Phys. Rev. E 64, 031711 (2001)

    Article  ADS  Google Scholar 

  80. M. Yoneya, J. Fukuda, H. Yokoyama, H. Stark, Mol. Cryst. Liq. Cryst. 435, 75 (2005)

    Article  Google Scholar 

  81. C. Zhou, P. Yue, J.J. Feng, J. Fluid Mech. 593, 385 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. S. Khullar, C. Zhou, J.J. Feng, Phys. Rev. Lett. 99, 237802 (2007)

    Article  ADS  Google Scholar 

  83. T.J. Arbour, J. Enderlein, Lab Chip 10, 1286 (2010)

    Article  Google Scholar 

  84. P. Manneville, E. Dubois-Violette, J. Phys. (France) 37, 1115 (1976)

    Article  Google Scholar 

  85. I. Jánossy, P. Pieranski, E. Guyon, J. Phys. (France) 37, 1105 (1976)

    Article  Google Scholar 

  86. A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Phys. Rev. Lett. 99, 094502 (2007)

    Article  ADS  Google Scholar 

  87. A. Rapini, L. Léger, A. Martinet, J. Phys. Colloques 36, C1–189 (1975)

    Article  Google Scholar 

  88. R. Turner, Phil. Mag. 30, 13 (1974)

    Article  ADS  Google Scholar 

  89. P.E. Cladis, W. van Saarloos, P.L. Finn, A.R. Kortan, Phys. Rev. Lett. 58, 222 (1987)

    Article  ADS  Google Scholar 

  90. G. Ryskin, M. Kremenetsky, Phys. Rev. Lett. 67, 1574 (1991)

    Article  ADS  Google Scholar 

  91. H. Imura, K. Okano, Phys. Lett. A 42, 403 (1973)

    Article  ADS  Google Scholar 

  92. J. Ignés-Mullol, J. Baudry, P. Oswald, Phys. Rev. E 63, 031701 (2001)

    Article  ADS  Google Scholar 

  93. O. Yaroshchuk, Y. Reznikov, J. Mater. Chem. 22, 286 (2012)

    Article  Google Scholar 

  94. J.-H. Kim, M. Yoneya, H. Yokoyama, Nature 420, 159 (2002)

    Article  ADS  Google Scholar 

  95. P. Pieranski, E. Guyon, Solid State Comm. 13, 435 (1973)

    Article  ADS  Google Scholar 

  96. P. Pieranski, E. Guyon, Phys. Lett. 49A, 237 (1974a)

    ADS  Google Scholar 

  97. A. Sengupta, B. Schulz, E. Ouskova, Ch. Bahr, Microfluid. Nanofluid. 13, 941 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sengupta, A. (2013). Flow of Nematic Liquid Crystals in a Microfluidic Environment. In: Topological Microfluidics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00858-5_6

Download citation

Publish with us

Policies and ethics