Skip to main content

Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions

  • Chapter
  • First Online:
Singular Phenomena and Scaling in Mathematical Models

Abstract

The numerical simulation of dynamic wetting processes is of interest for a vast variety of industrial processes, where practical experiments are costly and time-consuming. In these simulations, the dynamic contact angle is a key parameter, but the modeling of its behavior is poorly understood so far. In this article, we simulate droplet impact on a dry flat surface by using two different contact angle models. Both models show good qualitative and quantitative agreement with experimental results. For our numerical method, we solve the three-dimensional Navier-Stokes equations with finite differences on a staggered grid. The free surface is captured by a level-set method, and the contact angle determines the shape of the level-set function at the boundary. Additionally, we investigate the mass-conservation properties of two volume-correction methods, which are invaluable for the analysis of the droplet behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Then, contact angles at corner cells of the geometry have to fulfill further restrictions as described in [6].

References

  1. Blake, T.D., Bracke, M., Shikhmurzaev, Y.D.: Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11(9), 1995–2007 (1999)

    Article  MATH  Google Scholar 

  2. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Croce, R., Griebel, M., Schweitzer, M.A.: A parallel level-set approach for two-phase flow problems with surface tension in three space dimensions. Preprint 157, Sonderforschungsbereich 611, Universität Bonn (2004)

    Google Scholar 

  4. Croce, R., Griebel, M., Schweitzer, M.A.: Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions. Int. J. Numer. Methods Fluids 62(9), 963–993 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Decent, S.P.: Hydrodynamic assist and the dynamic contact angle in the coalescence of liquid drops. IMA J. Appl. Math. 71(5), 740–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, C., Hidrovo, C., Wang, F., Eaton, J., Goodson, K.: 3-D numerical simulation of contact angle hysteresis for microscale two phase flow. Int. J. Multiph. Flow 34, 690–705 (2008)

    Article  Google Scholar 

  7. Goodwin, R., Homsy, G.M.: Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3(4), 215–528 (1991)

    Article  Google Scholar 

  8. Hocking, L.M.: A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. J. Fluid Mech. 79(2), 209–229 (1977)

    Google Scholar 

  9. Liu, J., Nguyen, N.T., Yap, Y.F.: Numerical studies of sessile droplet shape with moving contact lines. Micro Nanosyst. 3(1), 56–64 (2011)

    Article  Google Scholar 

  10. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18(1), 1–18 (1964)

    Article  MATH  Google Scholar 

  11. Monnier, J., Witomski, P.: Analysis of a local hydrodynamic model with Marangoni effect. J. Sci. Comput. 21(3), 369–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mukherjee, A., Kandlikar, S.G.: Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. Int. J. Heat Mass Transf. 50, 127–138 (2007)

    Article  MATH  Google Scholar 

  13. Shikhmurzaev, Y.D.: Capillary Flows with Forming Interfaces. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  14. Sibley, D.N., Savva, N., Kalliadasis, S.: Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids 24, 082105 (2012)

    Article  Google Scholar 

  15. Somalinga, S., Bose, A.: Numerical investigation of boundary conditions for moving contact line problems. Phys. Fluids 12(3), 499 (2000)

    Article  MATH  Google Scholar 

  16. Spelt, P.D.M.: A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207, 389–404 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sprittles, J.E., Shikhmurzaev, Y.D.: Finite element simulation of dynamic wetting flows as an interface formation process. J. Comput. Phys. 233, 34–65 (2013)

    Article  MathSciNet  Google Scholar 

  18. Sussman, M.: An adaptive mesh algorithm for free surface flows in general geometries. In: Vande Wouwer, A., Saucez, P., Schiesser, W.E. (eds.) Adaptive Method of Lines, pp. 207–231. Chapman and Hall/CRC, Boca Raton (2001)

    Google Scholar 

  19. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D Appl. Phys. 12(9), 1473 (1979)

    Article  Google Scholar 

  21. van Mourik, S.: Numerical modelling of the dynamic contact angle. Master’s thesis, University of Groningen (2002)

    Google Scholar 

  22. Yokoi, K., Vadillo, D., Hinch, J., Hutchings, I.: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys. Fluids 21(7), 072102 (2009)

    Article  Google Scholar 

  23. Yun-chao, S., Chun-hai, W., Zhi, N.: Study on wetting model with combined Level Set-VOF method when drop impact onto a dry surface. In: Electronic and Mechanical Engineering and Information Technology (EMEIT), Harbin, pp. 2583–2586 (2011)

    Google Scholar 

  24. Zahedi, S., Gustavsson, K., Kreiss, G.: A conservative level set method for contact line dynamics. J. Comput. Phys. 228, 6361–6375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Sonderforschungsbereich 611 “Singular Phenomena and Scaling in Mathematical Models” of the Deutsche Forschungsgemeinschaft DFG. We are grateful to Kensuke Yokoi (Cardiff University) for providing the experimental and numerical results of the droplet impact and the permission to use the corresponding pictures in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Griebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griebel, M., Klitz, M. (2014). Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions. In: Griebel, M. (eds) Singular Phenomena and Scaling in Mathematical Models. Springer, Cham. https://doi.org/10.1007/978-3-319-00786-1_13

Download citation

Publish with us

Policies and ethics