Skip to main content

Sulfhydryl-Reactive Phytochemicals as Dual Activators of Transcription Factors NRF2 and HSF1

  • Chapter
  • First Online:
50 Years of Phytochemistry Research

Abstract

Two central regulators, nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), control the KEAP1/NRF2/ARE pathway and the heat shock response, two essential cellular defense mechanisms. Both systems are highly inducible under conditions of stress. Many small molecules, including certain phytochemicals, such as isothiocyanates and phenylpropanoids, and/or their metabolites, have the capacity to induce the KEAP1/NRF2/ARE pathway. Recent results suggest that a common signal that is sensed through cysteine modification(s) within Kelch-like ECH-associated protein 1 (KEAP1) and HSF1, or possibly within a negative regulator of HSF1, is responsible for triggering both pathways. Celastrol, withaferin A, gedunin, curcumin, and sulforaphane are examples of structurally diverse phytochemicals with a common chemical signature: reactivity with sulfhydryl groups. This reactivity underlies their biological activities as multitarget agents for which protective effects have been documented in numerous animal models of human disease and which include induction of large networks of transcriptional programs regulated by transcription factors NRF2 and HSF1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talalay P, De Long MJ, Prochaska HJ (1988) Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci U S A 85:8261–8265

    PubMed  CAS  Google Scholar 

  2. Talalay P, Fahey JW, Holtzclaw WD et al (1995) Chemoprotection against cancer by phase 2 enzyme induction. Toxicol Lett 82–83:173–179

    PubMed  Google Scholar 

  3. Itoh K, Wakabayashi N, Katoh Y et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    PubMed  CAS  Google Scholar 

  4. Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    PubMed  CAS  Google Scholar 

  5. Trott A, West JD, Klaić L et al (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19:1104–1112

    PubMed  CAS  Google Scholar 

  6. Kansanen E, Jyrkkänen HK, Volger OL et al (2009) Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 284:33233–33241

    PubMed  CAS  Google Scholar 

  7. Kansanen E, Jyrkkänen HK, Levonen AL (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 52:973–982

    PubMed  CAS  Google Scholar 

  8. Santagata S, Xu YM, Wijeratne EM et al (2012) Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 7:340–349

    PubMed  CAS  Google Scholar 

  9. Zhang Y, Ahn YH, Benjamin IJ et al (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    PubMed  CAS  Google Scholar 

  10. Zhang DD, Lo SC, Cross JV et al (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

    PubMed  CAS  Google Scholar 

  11. Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    PubMed  CAS  Google Scholar 

  12. Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25:162–171

    PubMed  CAS  Google Scholar 

  13. Rada P, Rojo AI, Chowdhry S et al (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    PubMed  CAS  Google Scholar 

  14. Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272

    PubMed  CAS  Google Scholar 

  15. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18:1779–1791

    PubMed  CAS  Google Scholar 

  16. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    PubMed  CAS  Google Scholar 

  17. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    PubMed  CAS  Google Scholar 

  18. Malhotra D, Portales-Casamar E, Singh A et al (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38:5718–5734

    PubMed  CAS  Google Scholar 

  19. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    PubMed  CAS  Google Scholar 

  20. Morimoto RI (2011) The Heat Shock Response: Systems Biology of Proteotoxic Stress in Aging and Disease. Cold Spring Harb Symp Quant Biol 76:91–99

    PubMed  CAS  Google Scholar 

  21. Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838

    PubMed  CAS  Google Scholar 

  22. Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100

    PubMed  CAS  Google Scholar 

  23. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    PubMed  CAS  Google Scholar 

  24. Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    PubMed  CAS  Google Scholar 

  25. Ali A, Bharadwaj S, O’Carroll R et al (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    PubMed  CAS  Google Scholar 

  26. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    PubMed  CAS  Google Scholar 

  27. Westerheide SD, Bosman JD, Mbadugha BN et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279:56053–56060

    PubMed  CAS  Google Scholar 

  28. Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330

    PubMed  CAS  Google Scholar 

  29. Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    PubMed  CAS  Google Scholar 

  30. Matts RL, Brandt GE, Lu Y et al (2011) A systematic protocol for the characterization of Hsp90 modulators. Bioorg Med Chem 19:684–692

    PubMed  CAS  Google Scholar 

  31. Chadli A, Felts SJ, Wang Q et al (2010) Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the co-chaperone p23. J Biol Chem 285:4224–4231

    PubMed  CAS  Google Scholar 

  32. Zhang T, Hamza A, Cao X et al (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7:162–170

    PubMed  CAS  Google Scholar 

  33. Zhang T, Li Y, Yu Y et al (2009) Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem 284:35381–35389

    PubMed  CAS  Google Scholar 

  34. Hansen J, Palmfeldt J, Vang S et al (2011) Quantitative proteomics reveals cellular targets of celastrol. PLoS One 6:e26634

    PubMed  CAS  Google Scholar 

  35. Wu F, Han M, Wilson JX (2009) Tripterine prevents endothelial barrier dysfunction by inhibiting endogenous peroxynitrite formation. Br J Pharmacol 157:1014–1023

    PubMed  CAS  Google Scholar 

  36. Francis SP, Kramarenko II, Brandon CS et al (2011) Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis 2:e195

    PubMed  CAS  Google Scholar 

  37. Zhang YQ, Sarge KD (2007) Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med (Berl) 85:1421–1428

    CAS  Google Scholar 

  38. Paris D, Ganey NJ, Laporte V et al (2010) Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17

    PubMed  Google Scholar 

  39. Allison AC, Cacabelos R, Lombardi VR et al (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 25:1341–1357

    PubMed  CAS  Google Scholar 

  40. Cleren C, Calingasan NY, Chen J et al (2005) Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 94:995–1004

    PubMed  CAS  Google Scholar 

  41. Kiaei M, Kipiani K, Petri S et al (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 2:246–254

    PubMed  CAS  Google Scholar 

  42. Hughes D, Guttenplan JB, Marcus CB et al (2008) Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila) 1:485–493

    CAS  Google Scholar 

  43. Raja SM, Clubb RJ, Ortega-Cava C et al (2011) Anticancer activity of Celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers. Cancer Biol Ther 11:263–276

    PubMed  CAS  Google Scholar 

  44. Yadav VR, Sung B, Prasad S et al (2010) Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J Mol Med (Berl) 88:1243–1253

    CAS  Google Scholar 

  45. Huang L, Zhang Z, Zhang S et al (2011) Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway. Int J Mol Med 27:407–415

    PubMed  CAS  Google Scholar 

  46. Lee JH, Choi KJ, Seo WD et al (2011) Enhancement of radiation sensitivity in lung cancer cells by celastrol is mediated by inhibition of Hsp90. Int J Mol Med 27:441–446

    PubMed  CAS  Google Scholar 

  47. Brandt GE, Schmidt MD, Prisinzano TE et al (2008) Gedunin, a novel Hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem 51:6495–6502

    PubMed  CAS  Google Scholar 

  48. Smirnova NA, Haskew-Layton RE, Basso M et al (2011) Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chem Biol 2011 18:752–765

    CAS  Google Scholar 

  49. Uddin SJ, Nahar L, Shilpi JA et al (2007) Gedunin, a limonoid from Xylocarpus granatum, inhibits the growth of CaCo-2 colon cancer cell line in vitro. Phytother Res 21:757–761

    PubMed  CAS  Google Scholar 

  50. Cazal CM, Choosang K, Severino VG et al (2010) Evaluation of effect of triterpenes and limonoids on cell growth, cell cycle and apoptosis in human tumor cell line. Anticancer Agents Med Chem 10:769–776

    PubMed  CAS  Google Scholar 

  51. Kamath SG, Chen N, Xiong Y et al (2009) Gedunin, a novel natural substance, inhibits ovarian cancer cell proliferation. Int J Gynecol Cancer 19:1564–1569

    PubMed  Google Scholar 

  52. Zhang B, Au Q, Yoon IS et al (2009) Identification of small-molecule HSF1 amplifiers by high content screening in protection of cells from stress induced injury. V Biochem Biophys Res Commun 390:925–930

    CAS  Google Scholar 

  53. Su BN, Park EJ, Nikolic D et al (2003) Isolation and characterization of miscellaneous secondary metabolites of Deprea subtriflora. J Nat Prod 66:1089–1093

    PubMed  CAS  Google Scholar 

  54. Kang YH, Pezzuto JM (2004) Induction of quinone reductase as a primary screen for natural product anticarcinogens. Methods Enzymol 382:380–414

    PubMed  CAS  Google Scholar 

  55. Yu Y, Hamza A, Zhang T et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79:542–551

    PubMed  CAS  Google Scholar 

  56. Grover A, Shandilya A, Agrawal V et al (2011) Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Biochem Biophys Res Commun 404:498–503

    PubMed  CAS  Google Scholar 

  57. Grover A, Shandilya A, Agrawal V et al (2011) Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. BMC Bioinformatics 12(Suppl 1):S30

    PubMed  Google Scholar 

  58. Zhang X, Mukerji R, Samadi AK et al (2011) Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin A-induced apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med 11:84

    PubMed  CAS  Google Scholar 

  59. Dinkova-Kostova AT, Talalay P (1999) Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 20:911–914

    PubMed  CAS  Google Scholar 

  60. Dinkova-Kostova AT, Massiah MA, Bozak RE et al (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U S A 98:3404–3409

    PubMed  CAS  Google Scholar 

  61. Scapagnini G, Colombrita C, Amadio M et al (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403

    PubMed  CAS  Google Scholar 

  62. Balogun E, Hoque M, Gong P et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887–895

    PubMed  CAS  Google Scholar 

  63. Jeong GS, Oh GS, Pae HO et al (2006) Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. Exp Mol Med 38:393–400

    PubMed  CAS  Google Scholar 

  64. McNally SJ, Harrison EM, Ross JA et al (2006) Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 81:623–626

    PubMed  Google Scholar 

  65. Rushworth SA, Ogborne RM, Charalambos CA et al (2006) Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341:1007–1016

    PubMed  CAS  Google Scholar 

  66. Andreadi CK, Howells LM, Atherfold PA et al (2006) Involvement of Nrf2, p38, B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol 69:1033–1040

    PubMed  CAS  Google Scholar 

  67. Sood A, Mathew R, Trachtman H (2001) Cytoprotective effect of curcumin in human proximal tubule epithelial cells exposed to shiga toxin. Biochem Biophys Res Commun 283:36–41

    PubMed  CAS  Google Scholar 

  68. Kanitkar M, Bhonde RR (2008) Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci 82:182–189

    PubMed  CAS  Google Scholar 

  69. Khan S, Heikkila JJ (2011) Curcumin-induced inhibition of proteasomal activity, enhanced HSP accumulation and the acquisition of thermotolerance in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 158:566–576

    PubMed  Google Scholar 

  70. Wu LX, Xu JH, Huang XW et al (2006) Down-regulation of p210(bcr/abl) by curcumin involves disrupting molecular chaperone functions of Hsp90. Acta Pharmacol Sin 27:694–699

    PubMed  CAS  Google Scholar 

  71. Chen HW, Yu SL, Chen JJ et al (2004) Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol 65:99–110

    PubMed  CAS  Google Scholar 

  72. Shen SQ, Zhang Y, Xiang JJ et al (2007) Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 13:1953–1961

    PubMed  CAS  Google Scholar 

  73. Kato K, Ito H, Kamei K et al (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 3:152–160

    PubMed  CAS  Google Scholar 

  74. Surh YJ, Chun KS (2007) Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 595:149–172

    PubMed  Google Scholar 

  75. Calabrese V, Bates TE, Mancuso C et al (2008) Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 52:1062–1073

    PubMed  CAS  Google Scholar 

  76. Hatcher H, Planalp R, Cho J et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    PubMed  CAS  Google Scholar 

  77. Lao CD, Ruffin MT 4th, Normolle D et al (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10

    PubMed  Google Scholar 

  78. Zhang Y, Talalay P, Cho CG et al (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89:2399–2403

    PubMed  CAS  Google Scholar 

  79. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl 1):S128–S138

    PubMed  Google Scholar 

  80. Hayes JD, McMahon M, Chowdhry S et al (2010) Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 13:1713–1748

    PubMed  CAS  Google Scholar 

  81. Calabrese V, Cornelius C, Dinkova-Kostova AT et al (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    PubMed  CAS  Google Scholar 

  82. Hu R, Xu C, Shen G et al (2006) Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. Cancer Lett 243:170–192

    PubMed  CAS  Google Scholar 

  83. Sharma R, Sharma A, Chaudhary P et al (2010) Role of lipid peroxidation in cellular responses to D, L-sulforaphane, a promising cancer chemopreventive agent. Biochemistry 49:3191–3202

    PubMed  CAS  Google Scholar 

  84. Gan N, Wu YC, Brunet M et al (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285:35528–35536

    PubMed  CAS  Google Scholar 

  85. Li Y, Zhang T, Schwartz SJ et al (2011) Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 63:1151–1159

    PubMed  CAS  Google Scholar 

  86. Myzak MC, Karplus PA, Chung FL et al (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    PubMed  CAS  Google Scholar 

  87. Myzak MC, Hardin K, Wang R et al (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27:811–819

    PubMed  CAS  Google Scholar 

  88. Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

    PubMed  CAS  Google Scholar 

  89. Myzak MC, Dashwood WM, Orner GA et al (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20:506–508

    PubMed  CAS  Google Scholar 

  90. Myzak MC, Tong P, Dashwood WM et al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232:227–234

    CAS  Google Scholar 

  91. Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369

    PubMed  CAS  Google Scholar 

  92. Bali P, Pranpat M, Bradner J et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    PubMed  CAS  Google Scholar 

  93. Gibbs A, Schwartzman J, Deng V et al (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A 106:16663–16668

    PubMed  CAS  Google Scholar 

  94. Baillie TA, Kassahun K (1994) Reversibility in glutathione-conjugate formation. Adv Pharmacol 27:163–181

    PubMed  CAS  Google Scholar 

  95. Shibata T, Kimura Y, Mukai A et al (2011) Transthiocarbamoylation of proteins by thiolated isothiocyanates. J Biol Chem 286:42150–42161

    PubMed  CAS  Google Scholar 

  96. Zhang Y (2012) The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 33:2–9

    PubMed  Google Scholar 

  97. Calamini B, Silva MC, Madoux F et al (2011) Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 8:185–196

    PubMed  Google Scholar 

  98. Peng B, Xu L, Cao F et al (2010) HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol Cancer 9:79

    PubMed  Google Scholar 

  99. Klaić L, Trippier PC, Mishra RK et al (2011) Remarkable stereospecific conjugate additions to the Hsp90 inhibitor celastrol. J Am Chem Soc 133:19634–19637

    PubMed  Google Scholar 

  100. Snyder GH, Cennerazzo MJ, Karalis AJ et al (1981) Electrostatic influence of local cysteine environments on disulfide exchange kinetics. Biochemistry 20:6509–6519

    PubMed  CAS  Google Scholar 

  101. Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18:1917–1926

    PubMed  CAS  Google Scholar 

  102. Ahn YH, Hwang Y, Liu H et al (2010) Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc Natl Acad Sci U S A 107:9590–9595

    PubMed  CAS  Google Scholar 

  103. McMahon M, Lamont DJ, Beattie KA et al (2010) Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 107:18838–18843

    PubMed  CAS  Google Scholar 

  104. Hu C, Eggler AL, Mesecar AD et al (2011) Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol 24:515–521

    PubMed  CAS  Google Scholar 

  105. Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151

    PubMed  CAS  Google Scholar 

  106. Levonen AL, Landar A, Ramachandran A et al (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    PubMed  CAS  Google Scholar 

  107. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD et al (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101:2040–2045

    PubMed  CAS  Google Scholar 

  108. Yamamoto T, Suzuki T, Kobayashi A et al (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28:2758–2770

    PubMed  CAS  Google Scholar 

  109. Kobayashi M, Li L, Iwamoto N et al (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502

    PubMed  CAS  Google Scholar 

  110. Fourquet S, Guerois R, Biard D et al (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285:8463–8471

    PubMed  CAS  Google Scholar 

  111. Eggler AL, Small E, Hannink M et al (2009) Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J 422:171–180

    PubMed  CAS  Google Scholar 

  112. Lu M, Kim HE, Li CR et al (2008) Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity. Biochemistry 47:6007–6015

    PubMed  CAS  Google Scholar 

  113. Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    PubMed  CAS  Google Scholar 

  114. Nardai G, Sass B, Eber J et al (2000) Reactive cysteines of the 90-kDa heat shock protein, Hsp90. Arch Biochem Biophys 384:59–67

    PubMed  CAS  Google Scholar 

  115. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    PubMed  CAS  Google Scholar 

  116. Tsutsumi S, Mollapour M, Prodromou C et al (2012) Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc Natl Acad Sci U S A 109:2937–2942

    PubMed  CAS  Google Scholar 

  117. Chen S, Sullivan WP, Toft DO et al (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118–129

    PubMed  CAS  Google Scholar 

  118. Young JC, Obermann WM, Hartl FU (1998) Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of Hsp90. J Biol Chem 273:18007–18010

    PubMed  CAS  Google Scholar 

  119. Meyer P, Prodromou C, Liao C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23:1402–1410

    PubMed  CAS  Google Scholar 

  120. Panaretou B, Siligardi G, Meyer P et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone Aha1. Mol Cell 10:1307–1318

    PubMed  CAS  Google Scholar 

  121. Retzlaff M, Hagn F, Mitschke L et al (2010) Asymmetric activation of the Hsp90 dimer by its cochaperone Aha1. Mol Cell 37:344–354

    PubMed  CAS  Google Scholar 

  122. Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    PubMed  CAS  Google Scholar 

  123. Richter K, Muschler P, Hainzl O et al (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. J Biol Chem 278:10328–10333

    PubMed  CAS  Google Scholar 

  124. Lee CT, Graf C, Mayer FJ et al (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31:1518–1528

    PubMed  CAS  Google Scholar 

  125. Forafonov F, Toogun OA, Grad I et al (2008) p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol Cell Biol 28:3446–3456

    PubMed  CAS  Google Scholar 

  126. Johnson JL, Beito TG, Krco CJ et al (1994) Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol 14:1956–1963

    PubMed  CAS  Google Scholar 

  127. Richter K, Walter S, Buchner J (2004) The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342:1403–1413

    PubMed  CAS  Google Scholar 

  128. Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    PubMed  CAS  Google Scholar 

  129. Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19:5930–5940

    PubMed  CAS  Google Scholar 

  130. Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    PubMed  CAS  Google Scholar 

  131. Wandinger SK, Suhre MH, Wegele H et al (2006) The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 25:367–376

    PubMed  CAS  Google Scholar 

  132. Mollapour M, Tsutsumi S, Donnelly AC et al (2010) Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 37:333–343

    PubMed  CAS  Google Scholar 

  133. Jorge I, Casas EM, Villar M et al (2007) High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: application to biological studies. J Mass Spectrom 42:1391–1403

    PubMed  CAS  Google Scholar 

  134. Rhee KY, Erdjument-Bromage H, Tempst P et al (2005) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A 102:467–472

    PubMed  CAS  Google Scholar 

  135. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  Google Scholar 

  136. Zhang Y, Keszler A, Broniowska KA et al (2005) Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins. Free Radic Biol Med 38:874–881

    PubMed  CAS  Google Scholar 

  137. Martínez-Ruiz A, Villanueva L, González de Orduña C et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102:8525–8530

    PubMed  Google Scholar 

  138. Retzlaff M, Stahl M, Eberl HC et al (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10:1147–1153

    PubMed  CAS  Google Scholar 

  139. Morra G, Verkhivker G, Colombo G (2009) Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput Biol 5:e1000323

    PubMed  Google Scholar 

  140. Carbone DL, Doorn JA, Kiebler Z et al (2005) Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease. J Pharmacol Exp Ther 315:8–15

    PubMed  CAS  Google Scholar 

  141. Sreeramulu S, Gande SL, Göbel M et al (2009) Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chem Int Ed Engl 48:5853–5855

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to the Biotechnology and Biological Sciences Research Council (BBSRC, Project Grant BB/J007498/1) and Research Councils UK for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena T. Dinkova-Kostova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dinkova-Kostova, A., Zhang, Y., Naidu, S., Kostov, R., Pheely, A., Calabrese, V. (2013). Sulfhydryl-Reactive Phytochemicals as Dual Activators of Transcription Factors NRF2 and HSF1. In: Gang, D. (eds) 50 Years of Phytochemistry Research. Recent Advances in Phytochemistry, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00581-2_6

Download citation

Publish with us

Policies and ethics