Skip to main content

Active sensing: Head and vibrissal velocity during exploratory behaviors of the rat

  • Chapter
Frontiers in Sensing

Abstract

The vibrissal-trigeminal pathway of the rat has become an increasingly important model in neuroscience to study how sensory and motor signals are encoded, processed, and integrated in the nervous system, ultimately yielding “perception“ of an object. In this chapter, we focus specifically on the role of head and vibrissa (whisker) velocity during exploratory movements. The chapter begins by describing basic vibrissal anatomy and mechanics, and shows that different studies measure “vibrissa velocity“ under very different mechanical conditions, which will give rise to very different types of mechanoreceptor activation. It is thus critical to consider forces and bending moments at the whisker base in addition to vibrissa velocity when quantifying vibrissa-object contact during natural behavior. To illustrate this point, we summarize recent results demonstrating that whisking velocity at the time of collision with an object may influence the rat’s ability to determine the radial distance to the object as well as the horizontal angle of contact. Further, we present evidence suggesting that the rat may actively select velocities at different points in the whisking trajectory, perhaps to aid localization behavior in these two dimensions. Finally, because the whiskers are always acting in concert with the head, we describe correlations between whisking behavior and head velocity. Preliminary data suggest that the position, orientation, and velocity of the head — which moves at a very different spatial and temporal scale than the vibrissae — will have a large effect on the tactile information acquired by the vibrissal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahissar E (1998) Temporal-code to rate-code conversion by neuronal phase-locked loops. Neural Comput 10: 597–650

    Article  PubMed  CAS  Google Scholar 

  • Ahissar E, Arieli A (2001) Figuring space by time. Neuron 32: 185–201

    Article  PubMed  CAS  Google Scholar 

  • Arabzadeh E, Panzeri S, Diamond ME (2004) Vibrissa vibration information carried by rat barrel cortex neurons. J Neurosci 24: 6011–6020

    Article  PubMed  CAS  Google Scholar 

  • Arabzadeh E, Panzeri S, Diamond ME (2006) Deciphering the spike train of a sensory neuron: Counts and temporal patterns in the rat vibrissa pathway. J Neurosci 26: 9216–9226

    Article  PubMed  CAS  Google Scholar 

  • Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of vibrissa vibration by rat barrel cortex neurons: Implications for texture discrimination. J Neurosci 23: 9146–9154

    PubMed  CAS  Google Scholar 

  • Arvidsson J, Rice FL (1991) Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the rat. J Comp Neurol 309: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Belford GR, Killackey HP (1979) Development of vibrissae representation in sub-cortical trigeminal centers of the neonatal rat. J Comp Neurol 188: 63–74

    Article  PubMed  CAS  Google Scholar 

  • Berg RW, Kleinfeld D (2003) Rhythmic whisking by the rat: Retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89: 104–117

    Article  PubMed  Google Scholar 

  • Bermejo R, Vyas A, Zeigler H (2002) Topography of rodent whisking. I. Two dimensional monitoring of vibrissa movements. Somatosens Mot Res 19: 341–346

    Article  PubMed  Google Scholar 

  • Birdwell JA, Solomon JH, Thajchayapong M, Taylor M, Cheely M, Towal RB, Conradt J, Hartmann MJZ (2007) Biomechanical models for radial distance determination by rat vibrissae. J Neuro-physiol 98: 2439–2455

    Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84: 81–97

    Article  PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10: 2638–2648

    PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1995) Task-and subject-related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Dean P (1981) Visual pathways and acuity in hooded rats. Behav Brain Res 3: 239–271

    Article  PubMed  CAS  Google Scholar 

  • Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the vibrissa sensorimotor system. Nature Rev Neurosci 9: 601–601

    Article  CAS  Google Scholar 

  • Dörfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135: 147–154

    PubMed  Google Scholar 

  • Dörfl J (1985) The innervation of the mystacial region of the white mouse. A topographical study. J Anat 142: 173–184

    PubMed  Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. J Comp Neurol 449: 103–119

    Article  PubMed  Google Scholar 

  • Gibson JM, Welker WI (1983a) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. Somatosens Res 1: 51–67

    Article  PubMed  CAS  Google Scholar 

  • Gibson JM, Welker WI (1983b) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Res 1: 95–117

    Article  PubMed  CAS  Google Scholar 

  • Gopal V, Hartmann MJZ (2007) Using hardware models to quantify sensory data acquisition across the rat vibrissal array. J Bioinsp Biomim 2: 135–145

    Article  Google Scholar 

  • Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of vibrissa movements during surface exploration. J Neurophysiol 101: 862–874

    Article  PubMed  Google Scholar 

  • Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Natural resonance frequencies and damping characteristics of rat vibrissae. J Neurosci 23: 6510–6519

    PubMed  CAS  Google Scholar 

  • Harvey MA, Bermejo R, Zeigler HP (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Somatosens Mot Res 18: 211–222

    Article  PubMed  CAS  Google Scholar 

  • Hill, DN Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: Rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28: 3438–3455

    Article  PubMed  CAS  Google Scholar 

  • Hipp J, Arabzadeh E, Zorzin, E, Conradt J, Kayser C, Diamond ME, Konig P (2006) Texture signals in vibrissa vibrations. J Neurophysiol 95: 1792–1799

    Article  PubMed  Google Scholar 

  • Jin TE, Witzemann V, Brecht M (2004) Fiber types of the intrinsic vibrissa muscle and whisking behavior. J Neurosci 24: 3386–3393

    Article  PubMed  CAS  Google Scholar 

  • Jones LM, Depireux DA, Simons DJ, Keller A (2004) Robust temporal coding in the trigeminal system. Science 304: 1986–1989

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Kanayama N, Tsuji T (1998) Active antenna for contact sensing. IEEE T Robotic Autom 14: 278–291

    Article  Google Scholar 

  • Keller J, Strasburger H, Cerutti DT, Sabel BA (2000) Assessing spatial vision — automated measurement of the contrast-sensitivity function in the hooded rat. J Neurosci Meth. 97: 103–110

    Article  CAS  Google Scholar 

  • Khatri V, Bermejo R, Brumberg JC, Keller A, Zeigler HP (2009) Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats. J Neurophysiol 101: 1836–1846

    Article  PubMed  CAS  Google Scholar 

  • Killackey HP (1980) Pattern-formation in the trigeminal system of the rat. Trends Neurosci 3: 303–306

    Google Scholar 

  • Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Knutsen P, Biess A, Ahissar E (2008) Vibrissal kinematics in 3D: Tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Krupa D, Matell M, Brisben A, Oliveira L, Nicolelis MAL (2001) Behavioral properties of the trigeminal somatosensory system in rats performing vibrissa-dependent tactile discriminations. J Neurosci 21: 5752–5763

    PubMed  CAS  Google Scholar 

  • Leiser SC, Moxon KA (2006) Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion. J Neurophysiol 95: 3129–3145

    Article  PubMed  Google Scholar 

  • Leiser SC, Moxon KA (2007) Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat. Neuron 53: 117–133

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7: 47–65

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Whitmer D, Figueroa R, Williams B, Kleinfeld D (2007) Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol 5: e15

    Article  PubMed  Google Scholar 

  • Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc R Soc Lond B 274: 1035–1041

    Article  Google Scholar 

  • Moore CI (2004) Frequency-dependent processing in the vibrissa sensory system. J Neurophysiol 91: 2390–2399

    Article  PubMed  Google Scholar 

  • Mosconi TM, Rice FL, Song MJ (1993) Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat. J Comp Neurol 328: 232–251

    Article  PubMed  CAS  Google Scholar 

  • Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23: 6499–6509

    PubMed  CAS  Google Scholar 

  • Nicolelis MAL, DeOliveira LMO, Lin RCS, Chapin JK (1996) Active tactile exploration influences the functional maturation of the somatosensory system. J Neurophysiol 75: 2192–2196

    PubMed  CAS  Google Scholar 

  • Pinto DJ, Brumberg JC, Simons DJ (2000) Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol 83: 1158–1166

    PubMed  CAS  Google Scholar 

  • Pinto DJ, Brumberg JC, Simons DJ, Ermentrout GB (1996) A quantitative population model of vibrissa barrels: Re-examining the Wilson-Cowan equations. J Comput Neurosci 3: 247–264

    Article  PubMed  CAS  Google Scholar 

  • Polley DB, Rickert JL, Frostig RD (2005) Vibrissa-based discrimination of object orientation determined with a rapid training paradigm. Neurobiol Learn Mem 83: 134–142

    Article  PubMed  Google Scholar 

  • Prusky GT, Harker KT, Douglas RM, Whishaw IQ (2002) Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res 136: 339–348

    Article  PubMed  Google Scholar 

  • Prusky GT, West PWR, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40: 2201–2209

    Article  PubMed  CAS  Google Scholar 

  • Quist BW, Hartmann MJZ. (2009) Experimental validation of a quasi-static model of vibrissa bending: Effects of taper and curvature. Soc Neurosci Ann Mtg, Program Number 174.6. Chicago, IL

    Google Scholar 

  • Rice FL (1993) Structure, vascularization, and innervation of the mystacial pad of the rat as revealed by the lectin griffonia simplicifolia. J Comp Neurol 337: 386–399

    Article  PubMed  CAS  Google Scholar 

  • Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385: 149–184

    Article  PubMed  CAS  Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252: 154–174

    Article  PubMed  CAS  Google Scholar 

  • Sachdev R, Berg R, Champney G, Kleinfeld D, Ebner F (2003) Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking. Somatosens Mot Res 20: 163–169

    Article  PubMed  Google Scholar 

  • Sachdev R, Sato T, Ebner F (2002) Divergent movement of adjacent vibrissae. J Neurophysiol 87: 1440–1448

    PubMed  Google Scholar 

  • Shoykhet M, Doherty D, Simons D (2000) Coding of deflection velocity and amplitude by vibrissa primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Silveira LCL, Heywood CA, Cowey A (1987) Contrast sensitivity and visual-acuity of the pigmented rat determined electrophysiologically. Vision Res 27: 1719–1731

    Article  PubMed  CAS  Google Scholar 

  • Solomon JH, Hartmann MJ (2006) Sensing features with robotic vibrissae. Nature 443: 525

    Article  PubMed  CAS  Google Scholar 

  • Stüttgen MC, Kullmann S, Schwarz C (2008) Responses of rat trigeminal ganglion neurons to longitudinal vibrissa stimulation. J Neurophysiol 100: 1879–1884

    Article  PubMed  Google Scholar 

  • Stüttgen MC, Ruter J, Schwarz C (2006) Two psychophysical channels of vibrissa deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26: 7933–7941

    Article  PubMed  Google Scholar 

  • Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40: 621–630

    Article  PubMed  CAS  Google Scholar 

  • Szwed M, Bagdasarian K, Blumenfeld B, Barak O, Derdikman D, Ahissar E (2006) Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. J Neurophysiol 95: 791–802

    Article  PubMed  Google Scholar 

  • Temereanca S, Simons DJ (2003) Local field potentials and the encoding of vibrissa deflections by population firing synchrony in thalamic barreloids. J Neurophysiol 89: 2137–2145

    Article  PubMed  Google Scholar 

  • Towal RB, Hartmann, MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26: 8838–8846

    Article  PubMed  CAS  Google Scholar 

  • Towal RB, Hartmann MJZ (2008) Variability in velocity profiles during the free-air whisking behavior of unrestrained rats. J Neurophysiol 100: 740–752

    Article  PubMed  Google Scholar 

  • Towal RB, Hartmann MJZ (2010) Principles and Applications of Active Tactile Sensing Strategies in The Rat Vibrissal System. IEEE Sensors Conference. Kona, HI. Nov 01-04, 2010

    Google Scholar 

  • Towal RB, Quist BW, Gopal V, Solomon JH and Hartmann MJZ (2011) The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact. PLoS Computational Biology 7:e1001120.

    Article  PubMed  CAS  Google Scholar 

  • Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2: 1–6

    Article  Google Scholar 

  • Vaziri A, Jenks RA, Boloori AR, Stanley GB (2007) Flexible probes for characterizing surface topology: From biology to technology. Exp Mech 47: 417–425

    Article  Google Scholar 

  • Vincent SB (1913) The tactile hair of the white rat. J Comp Neurol 23: 1–38

    Article  Google Scholar 

  • Welker WI (1964) Analysis of sniffing of the albino rat. Behav 22: 223–244

    Article  Google Scholar 

  • Williams C, Kramer E (2010) The advantages of a tapered vibrissa. PLoS One 5: e8806. doi:10 1371/journal. pone.0 008 806

    Article  PubMed  Google Scholar 

  • Wineski L (1983) Movements of the cranial vibris-sae in the golden hamster (Mesocricetus auratus). J Zool (Lond) 200: 261–280

    Article  Google Scholar 

  • Wineski LE, Donald MR, Pitts SA (1988) Morphology of the vibrissal motor system in rodents exhibiting different types of exploratory behavior. Amer Zool 28: 77A

    Google Scholar 

  • Woolsey TA, Welker C, Schwartz RH (1975) Comparative anatomical studies of SMl face cortex with special reference to occurrence of barrels in layer 4. J Comp Neurol 164: 79–94

    Article  PubMed  CAS  Google Scholar 

  • Zucker E, Welker WI (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12: 138–156

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Towal, R.B., Quist, B.W., Solomon, J.H., Hartmann, M.J.Z. (2012). Active sensing: Head and vibrissal velocity during exploratory behaviors of the rat. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_14

Download citation

Publish with us

Policies and ethics