Skip to main content

Abstract

All life we know no matter how freaky in other respects, is still based on organic molecules dissolved in water, and we all use the same basic cellular machinery. Extremophiles haven’t fundamentally changed the way we think about strategies to look for life, but they have bolstered the optimism with which we search. Right now anywhere with liquid water is considered a possible habitat, and this guides our quest. (Grinspoon 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen EE, Tyson GW, Whitaker RJ, Detter JC, Richardson PM, Banfield JF (2007) Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA 104:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner R, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 17–28

    Chapter  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Brock TD (1969) Microbial growth under extreme conditions. Symp Soc Gen Microbiol 19:15–42

    Google Scholar 

  • Brock TD (1986) Introduction: an overview of the thermophiles. In: Brock TD (ed) Thermophiles. General, molecular and applied microbiology. John Wiley & Sons, New York, pp 1–16

    Google Scholar 

  • Burgess EA, Wagner ID, Wiegel J (2007) Thermal environments and biodiversity. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, USA, pp 13–29

    Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Ciaramella M, Napoli A, Rossi M (2004) Another extreme genome: how to live at pH 0. Trends Microbiol 13:49–51

    Article  Google Scholar 

  • Cowan DA (2004) The upper temperature for life — where do we draw the line? Trends Microbiol 12:58–60

    Article  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  Google Scholar 

  • Daniel RM (1996) The upper limits of enzyme thermal stability. Enzyme Microb Technol 19:74–79

    Article  CAS  Google Scholar 

  • Dartnell LR, Hunter SJ, Lovell KV, Coates AJ, Ward JM (2010) Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10:717–732

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654

    Article  PubMed  CAS  Google Scholar 

  • Denner EBM, McGenity TJ, Busse H-J, Wanner G, Grant WD, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J System Bacteriol 44:-774–780

    Article  Google Scholar 

  • Desbruyeres D, Laubier L (1986) Les Alvinellidae, une famille nouvelle d’annelides polychetes infeodees aux sources hydrothermales sous-marines: systematique, biologie et ecologie. Can J Zool 64:2227–2245

    Article  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Enache M, Popescu G, Itoh T, Masahiro Kamekura M (2011) Halophilic microorganisms from man-made and natural hypersaline environments: physiology, ecology and biotechnological potential, this volume

    Google Scholar 

  • Fendrihan S, Negoiţă TG (2011) Psychrophilic microorganisms as important source for biotechnological processes, this volume

    Google Scholar 

  • Fendrihan S, Berces A, Lammer H, Musso M, Ronto G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Prangishvili D (2009a) The origin of viruses. Res Microbiol 160:466–472

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Prangishvili D (2009b) The great billion-year war between ribosome-and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. In: Natural Genetic Engineering and Natural Genome Editing: Ann NY Acad Sci 1178:65–77

    Article  CAS  Google Scholar 

  • Gerday C, Glansdorff N (eds) (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, USA

    Google Scholar 

  • Gherna RL (1994) Culture preservation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Manual of methods for general microbiology. American Society for Microbiology, Washington, DC, pp 278–292

    Google Scholar 

  • Gilichinsky DA (2002) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology. John Wiley & Sons, New York, pp 2367–2385

    Google Scholar 

  • Gilmour D (1990) Halotolerant and halophilic microorganisms. In: Edwards C (ed) Microbiologogy of extreme environments. Open University Press, Milton Keynes, pp 147–177

    Google Scholar 

  • Giovannoni S, Rappé M (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. John Wiley & Sons, New York, pp 47–84

    Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Grant WD (2004a) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grant WD (2004b) Introductory chapter: half a lifetime in soda lakes. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, Heidelberg, pp 17–32

    Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Order I. Halobacteriales Grant and Larsen 1989b, 495VP (effective publication: Grant and Larsen 1989a, 2216). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin, Heidelberg, New York, pp 294–299

    Google Scholar 

  • Grinspoon D (2003) Lonely planets. The natural philosophy of alien life. HarperCollins Publishers, New York, p 139

    Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439

    Article  PubMed  CAS  Google Scholar 

  • Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool 257:181–187

    Article  Google Scholar 

  • Heulin T, De Luca G, Barakat M, de Groot A, Blanchard L, Ortet P, Achouak W (2011) Bacterial adaptation to hot and dry deserts, this volume

    Google Scholar 

  • Hocking AD, Pitt JI (1999) Xeromyces bisporus Frazer. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopaedia of food microbiology, vol 3. Academic Press, London, pp 2329–2333

    Chapter  Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnersium tardigradum. Int J Rad Biol 82:843–848

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K, Grant WD (eds) (1998) Extremophiles: microbial life in extreme environments. Wiley series in ecological and applied microbiology. John Wiley & Sons Inc., New York

    Google Scholar 

  • Horneck G, Bucker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  PubMed  CAS  Google Scholar 

  • Hreggvidsson GO, Petursdottir SK, Björnsdottir SH, Fridjonsson OH (2011) Microbial speciation in the geothermal ecosystem, this volume

    Google Scholar 

  • Ito H, Watanabe H, Takeshia M, Iizuka H (1983) Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric Biol Chem 47:1239–1247

    Article  CAS  Google Scholar 

  • Jeanthon C, Prieur D (1990) Susceptibility to heavy metals and characterization of heterotrophic bacteria isolated from two hydrothermal vent polychaete annelids, Alvinella pompejana and Alvinella caudata. Appl Environ Microbiol 56:3308–3314

    PubMed  CAS  Google Scholar 

  • Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766

    Article  PubMed  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Petra Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    Article  PubMed  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  PubMed  CAS  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Krebs CJ (2008) The ecological world view. CSIRO Publishing, Collinwood, Australia, pp 19–39

    Google Scholar 

  • Laidler JR, Stedman KM (2010) Virus silicification under simulated hot spring conditions. Astrobiology 10:569–576

    Article  PubMed  CAS  Google Scholar 

  • Le Romancer M, Gaillard M, Geslin C, Prieur D (2007) Viruses in extreme environments. Rev Environ Sci Biotechnol 6:17–31

    Article  Google Scholar 

  • Lévêque E, Janecek S, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 26:3–14

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Chapter one: microorganisms and microbiology. In: Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, San Francisco, pp 1–24

    Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  PubMed  CAS  Google Scholar 

  • Moissl-Eichinger C (2011) Extremophiles in spacecraft assembly clean rooms, this volume

    Google Scholar 

  • Nealson KH, Conrad PG (1999) Life: past, present and future. Philos Trans R Soc Lond B 354:1923–1939

    Article  CAS  Google Scholar 

  • Nicholson WL, Mukenata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–563

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:71–77

    Article  PubMed  CAS  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Oren A (2007) Biodiversity in highly saline environments. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, USA, pp 223–231

    Google Scholar 

  • Oren A, Rainey F (eds) (2006) Methods in microbiology. Extremophiles, vol 35. Elsevier, Oxford

    Google Scholar 

  • Pedersen K (2000) MiniReview. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  PubMed  CAS  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    PubMed  CAS  Google Scholar 

  • Seckbach J (ed) (2000) Journey to diverse microbial worlds. Adaptation to exotic environments. Series: Cellular origins and life in extreme habitats, vol 2. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Seckbach J, Chapman DJ (eds) (2010) Red algae in the genomic age. Series: Cellular origin and life in extreme habitats and astrobiology, vol 13. Springer, Heidelberg, Germany

    Google Scholar 

  • Seckbach J, Grube M (eds) (2010) Symbioses and stress. Series: Cellular origin and life in extreme habitats and astrobiology, vol 17. Springer, Heidelberg, Germany

    Google Scholar 

  • Seckbach J, Walsh M (eds) (2009) From fossils to astrobiology. Series: Cellular origin and life in extreme habitats and astrobiology, vol 12. Springer, Heidelberg, Germany

    Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Review. Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  PubMed  CAS  Google Scholar 

  • Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358

    Article  PubMed  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an Archaeal isolate from a Permian alpine salt deposit. Int J System Evol Microbiol 52:1807–1814

    Article  CAS  Google Scholar 

  • Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260

    Article  Google Scholar 

  • Stetter KO (2002) Hyperthermophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer Verlag, Berlin, New York, pp 169–184

    Chapter  Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Sys Evol Microbiol 51:1245–1256

    CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Weber APM, Horst RJ, Barbier GG, Oesterhelt C (2007) Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 256:1–34

    Article  PubMed  CAS  Google Scholar 

  • Westall F (2005) Early life on Earth and analogies to Mars. In: Tokano T (ed) Water on Mars and life. Advances in Astrobiology and Biogeophysics. Springer Verlag, Berlin, Heidelberg, pp 45–64

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Nat Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876

    Article  PubMed  CAS  Google Scholar 

  • Zharkov MA (1981) History of paleozoic salt accumulation. Springer Verlag, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Stan-Lotter, H. (2012). Physico-chemical boundaries of life. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Vienna. https://doi.org/10.1007/978-3-211-99691-1_1

Download citation

Publish with us

Policies and ethics