Skip to main content

Thermodynamics and Heating Processes

  • Chapter
  • First Online:
Chemical Solution Deposition of Functional Oxide Thin Films

Abstract

This chapter reviews the transformation of solution-derived ferroelectric thin films from the as-deposited to the crystalline state that occurs during heat treatment. Reaction chemistry and pathways associated with the elimination of organic constituents from the film are discussed, as are the thermodynamic and kinetic aspects of the nucleation and growth processes that lead to crystallization. Related topics discussed in this chapter include structural evolution during pyrolysis, thin film densification processes, the role of interfacial layers on film orientation, and control of thin film crystallization behavior and microstructure. A focus of the chapter is the consideration of solution chemistry effects on pyrolysis, densification and crystallization behavior and illustration of the magnitude of such effects on thin film microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While copper oxidation is more prevalent at the higher temperatures associated with crystallization (due to the more rapid oxidation kinetics), we discuss such atmosphere effects here since copper oxidation has been noted to begin at temperatures as low as 250 °C [28] or in the temperature range used for pyrolysis.

  2. 2.

    Although [31] deals with the preparation of films by sputtering, the basic arguments regarding atmosphere effects are still pertinent.

References

  1. Schwartz RW, Narayanan M (2009) Chemical solution deposition – basic principles. In: Mitzi D (ed) Solution processing of inorganic materials. Wiley, New York, pp 33–76

    Google Scholar 

  2. Schwartz RW, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. CR Chim 7:433–461

    Article  Google Scholar 

  3. Schwartz RW (1989) Chemical processing of PbTiO3 by co-precipitation and sol-gel methods: the role of powder and gel characteristics on crystallization behavior. Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL

    Google Scholar 

  4. Budd KD, Dey SK, Payne DA (1986) Effect of hydrolysis conditions on the characteristics of PbTiO3 gels and thin films. Mater Res Soc Symp Proc 73:711–716

    Article  Google Scholar 

  5. Budd KD, Dey SK, Payne DA (1985) Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br Ceram Soc Proc 36:107–121

    Google Scholar 

  6. Dey SK, Budd KD, Payne DA (1988) Thin-film ferroelectrics of PZT by sol-gel processing. IEEE Trans UFFC 35:80–81

    Article  Google Scholar 

  7. Braunstein G, Paz-Pujalt GR, Mason MG, Blanton T, Barnes CL, Margevich D (1993) The processes of formation and epitaxial alignment of SrTiO3 thin films prepared by metallo-organic decomposition. J Appl Phys 73:961–970

    Article  Google Scholar 

  8. Schwartz RW, Assink RA, Dimos D, Sinclair MB, Boyle TJ, Buchheit CD (1995) Effects of acetylacetone additions on PZT thin film processing. Mater Res Soc Symp Proc 361:377–387

    Article  Google Scholar 

  9. Polli AD, Lange FF (1995) Pyrolysis of Pb(Zr0.5Ti0.5)O3 precursors: avoiding lead partitioning. J Am Ceram Soc 78:3401–3404

    Article  Google Scholar 

  10. Neumayer DA, Duncombe PR, Laibowitz RB, Grill A (1997) Chemical solution deposition of BaSrTiO3 films. Int Ferro 18:297–309

    Article  Google Scholar 

  11. Li S, Condrate RA, Spriggs RM (1988) A FTIR and Raman spectral study of the preparation of lead titanate (PbTiO3) by a sol-gel method. Spectrosc Lett 21:969–980

    Article  Google Scholar 

  12. Seth VK, Schulze WA (1990) Fabrication and characterization of ferroelectric PLZT 7/65/35 ceramic thin films and fibers. Ferroelectrics 112:283–307

    Article  Google Scholar 

  13. Ousi-Benomar W, Xue SS, Lessard RA, Singh A, Wu ZL, Kuo PK (1994) Structural and optical characterization of BaTiO3 thin films prepared by metal-organic deposition from barium 2-ethylhexanoate and titanium dimethoxy dineodecanoate. J Mater Res 9:970–979

    Article  Google Scholar 

  14. Klee M, Eusemann R, Waser R, Brand W, van Hal H (1992) Processing and electrical properties of Pb(ZrxTi1-x)O3 (x = 0.2-0.75) films: comparison of metallo-organic decomposition and sol-gel processes. J Appl Phys 72:1566–1576

    Article  Google Scholar 

  15. Haertling GH (1991) PLZT thin films prepared from acetate precursors. Ferroelectrics 116:51–63

    Article  Google Scholar 

  16. Tahan DM, Safari A, Klein LC (1996) Preparation and characterization of BaxSr1-xTiO3 thin films by a sol-gel technique. J Am Ceram Soc 79:1593–1598

    Article  Google Scholar 

  17. Kumar S, Messing GL, White WB (1993) Metal organic resin derived barium titanate. I, formation of barium titanium oxycarbonate intermediate. J Am Ceram Soc 76:617–624

    Article  Google Scholar 

  18. Fox GR, Krupanidhi SB (1994) Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films. J Mater Res 9:699–711

    Article  Google Scholar 

  19. Bursill LA, Brooks KG (1994) Crystallization of sol-gel derived lead-zirconate-titanate thin films in argon and oxygen atmospheres. J Appl Phys 75:4501–4509

    Article  Google Scholar 

  20. Reaney IM, Brooks K, Klissurska R, Pawlaczyk C, Setter N (1994) Use of transmission electron microscopy for the characterization of rapid thermally annealed, solution-gel, lead zirconate titanate films. J Am Ceram Soc 77:1209–1216

    Article  Google Scholar 

  21. Brooks KG, Reaney IM, Klissurska R, Huang Y, Bursill L, Setter N (1994) Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates. J Mater Res 9:2540–2553

    Article  Google Scholar 

  22. Coffman PR, Barlingay CK, Gupta A, Dey SK (1996) Structure evolution in the PbO-ZrO2-TiO2 sol-gel system: part II-pyrolysis of acid and base-catalyzed bulk and thin film gels. J Sol-Gel Sci Technol 6:83–106

    Article  Google Scholar 

  23. Nouwen R, Mullens J, Franco D, Yperman J, Van Poucke LC (1996) Use of thermogravimetric analysis – Fourier transform infrared spectroscopy in the study of the reaction mechanism of the preparation of Pb(Zr, Ti)O3 by the sol-gel method. Vib Spectrosc 10:291–299

    Article  Google Scholar 

  24. Merklein S, Sporn D, Schönecker A (1993) Crystallization behavior and electrical properties of wet-chemically deposited lead zirconate titanate thin films. Mater Res Soc Symp Proc 310:263–269

    Article  Google Scholar 

  25. Schneller T, Waser R (2007) Chemical modifications of Pb(Zr0.3,Ti0.7)O3 precursor solutions and their influence on the morphological and electrical properties of the resulting thin films. J Sol-Gel Sci Technol 42:337–352. doi:10.1007/s10971-007-0764-2

    Article  Google Scholar 

  26. Chen S, Chen I (1994) Temperature-time texture transition of Pb(Zr1-xTix)O3 thin films: I, Role of Pb-rich intermediate phases. J Am Ceram Soc 77:2332–2336

    Article  Google Scholar 

  27. Tani T, Xu Z, Payne DA (1993) Preferred orientations for sol-gel derived PLZT thin layers. Mater Res Soc Symp Proc 310:269–274

    Article  Google Scholar 

  28. Huang Z, Zhang Q, Whatmore RW (1999) Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method. J Appl Phys 85:7355–7361

    Article  Google Scholar 

  29. Losego MD, Ihlefeld JF, Maria J (2008) Importance of solution chemistry in preparing sol-gel PZT thin films directly on copper surfaces. Chem Mater 20:303–307

    Article  Google Scholar 

  30. Losego MD, Jimison LH, Ihlefeld JF, Maria J (2005) Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates. Appl Phys Lett 86:172906

    Article  Google Scholar 

  31. Laughlin B, Ihlefeld J, Maria J (2005) Preparation of sputtered (Bax,Sr1-x)TiO3 thin films directly on copper. J Am Ceram Soc 88:2652–2654

    Article  Google Scholar 

  32. Narayanan M, Kwon D-K, Ma B, Balachandran U (2008) Deposition of sol-gel derived lead lanthanum zirconate titanate thin films on copper substrates. Appl Phys Lett 92:252905. doi:10.1063/1.2945887

    Article  Google Scholar 

  33. Yang GY, Lee SI, Liu ZJ, Anthony CJ, Dickey EC, Liu ZK, Randall CA (2006) Effect of local oxygen activity on Ni–BaTiO3 interfacial reactions. Acta Mater 54:3513–3523

    Article  Google Scholar 

  34. Kingon AI, Srinivasan S (2005) Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat Mater 4:233–237

    Article  Google Scholar 

  35. Gaskell DR (1981) Introduction to metallurgical thermodynamics, 2nd edn. Hemisphere Publishing Corporation, New York

    Google Scholar 

  36. Hirano SI, Yogo T, Kikuta K, Araki Y, Saitoh M, Ogasahara S (1992) Synthesis of highly oriented lead zirconate-lead titanate film using metallo-organics. J Am Ceram Soc 75:2785–2789

    Article  Google Scholar 

  37. Schwartz RW, Boyle TJ, Voigt JA, Buchheit CD (1994) Densification and crystallization of zirconia thin films prepared by sol-gel processing. In: Bhalla AS, Nair KM, Lloyd IK, Yanagida H, Payne DA (eds) Ferroic materials: design, preparation, and characteristics. Ceramic Trans 43:145–163

    Google Scholar 

  38. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic, Boston

    Google Scholar 

  39. Scherer GW (1987) Drying gels V. rigid gels. J Non Cryst Solids 92:122–144

    Article  Google Scholar 

  40. Garino TJ, Harrington M (1992) Residual stress in PZT thin films and its effect on ferroelectric properties. Mater Res Soc Symp Proc 243:341–347

    Article  Google Scholar 

  41. Zarzycki J (1982) Gel – glass transformation. J Non Cryst Solids 48:105–116

    Article  Google Scholar 

  42. Cooper AR (1986) Differences between gel-derived melts and those produced by batch melting. Mater Res Soc Symp Proc 73:421–430

    Article  Google Scholar 

  43. Brinker CJ, Roth EP, Tallant DR, Scherer GW (1986) Relationships between sol to gel and gel to glass conversions: structure of gels during densification. In: Hench LL, Ulrich DR (eds) Science of ceramic chemical processing. Wiley, New York, pp 37–51

    Google Scholar 

  44. Keddie JL, Giannelis EP (1991) Effect of heating rate on the sintering of titanium dioxide thin films: competition between densification and crystallization. J Am Ceram Soc 74:2669–2671

    Article  Google Scholar 

  45. Panda PC, Mobley WM, Raj R (1989) Effect of the heating rate on the relative rates of sintering and crystallization in glass. J Am Ceram Soc 72:2361–2364

    Article  Google Scholar 

  46. Pascual R, Sayer M, Vasant Kumar CVR, Zou L (1991) Rapid thermal processing of zirconia thin films produced by the sol-gel method. J Appl Phys 70:2348–2352

    Article  Google Scholar 

  47. Brinker CJ, Scherer GW (1984) Relationships between the sol-to-gel and gel-to-glass conversions. In: Hench LL, Ulrich DR (eds) Ultrastructure processing of ceramics, glasses, and composites. Wiley, New York, pp 43–59

    Google Scholar 

  48. Roy R (1969) Gel route to homogeneous glass preparation. J Am Ceram Soc 52:344

    Article  Google Scholar 

  49. Lange FF (1996) Chemical solution routes to single-crystal thin films. Science 273:903–909

    Article  Google Scholar 

  50. Seifert A, Lange FF, Speck JS (1995) Epitaxial growth of PbTiO3 thin films on (001) SrTiO3 from solution precursors. J Mater Res 10:680–691

    Article  Google Scholar 

  51. Voigt JA, Tuttle BA, Headley TJ, Lamppa DL (1995) The pyrochlore-to-perovskite transformation in solution-derived lead zirconate titanate thin films. Mater Res Soc Symp Proc 361:395–402

    Article  Google Scholar 

  52. Kwok CK, Desu SB (1992) Pyrochlore-perovskite phase transformation of lead zirconate titanate (PZT) thin films. Ceramic Trans 25:85–96

    Google Scholar 

  53. Lefevre MJ, Speck JS, Schwartz RW, Dimos D, Lockwood SJ (1996) Microstructural development in sol-gel derived lead zirconate titanate thin films: the role of precursor stoichiometry and processing environment. J Mater Res 11:2076–2084

    Article  Google Scholar 

  54. Norga GJ, Vasiliu F, Fe L, Wouters DJ, Van der Biest O (2003) Role of fluorite phase formation in the texture selection of sol-gel-prepared Pb(Zr1−x,Tix)O3 films on Pt electrode layers. J Mater Res 18:1232–1238

    Article  Google Scholar 

  55. Schwartz RW, Boyle TJ, Lockwood SJ, Sinclair MB, Dimos D, Buchheit CD (1995) Sol-gel processing of PZT thin films: a review of the state-of-the-art and process optimization strategies. Int Ferro 7:259–277

    Article  Google Scholar 

  56. Wilkinson AP, Speck JS, Cheetham AK, Natarajan S, Thomas JM (1994) In situ x-ray diffraction study of the crystallization kinetics in PbZr1-xTixO3 (PZT, x = 0.0, 0.55, 1.0). Chem Mater 6:750–754

    Article  Google Scholar 

  57. McCauley RA (1980) Structural characteristics of pyrochlore formation. J Appl Phys 51:290–294

    Article  Google Scholar 

  58. Tu YL, Calzada ML, Phillips NJ, Milne SJ (1996) Synthesis and electrical characterization of thin films of PZT made from a diol-based sol-gel route. J Am Ceram Soc 79:441–448

    Article  Google Scholar 

  59. Phillips NJ, Calzada ML, Milne SJ (1992) Sol-gel-derived lead titanate films. J Non Cryst Solids 147&148:285–290

    Article  Google Scholar 

  60. Kumar S, Messing GL (1994) Metal organic resin derived barium titanate: II, kinetics of BaTiO3 formation. J Am Ceram Soc 77:2940–2948

    Article  Google Scholar 

  61. Hasenkox U, Hoffmann S, Waser R (1998) Influence of precursor chemistry on the formation of MTiO3 (M = Ba, Sr) ceramic thin films. J Sol-Gel Sci Technol 12:67–79

    Article  Google Scholar 

  62. Gopalakrishnamurthy HS, Subba Rao M, Narayanan Kutty TR (1975) Thermal decomposition of titanyl oxalates-I; barium titanyl oxalate. J Inorg Nucl Chem 37:891–898

    Article  Google Scholar 

  63. Tsay J, Fang T (1996) Effects of temperature and atmosphere on the formation mechanism of barium titanate using the citrate process. J Am Ceram Soc 79:1693–1696

    Article  Google Scholar 

  64. Frey MH, Payne DA (1995) Synthesis and processing of barium titanate ceramics from alkoxide solutions and monolithic gels. Chem Mater 7:123–129

    Article  Google Scholar 

  65. Hoffman S, Hasenkox U, Waser R, Jia JL, Urban K (1997) Chemical solution deposition of BaTiO3 and SrTiO3 with columnar microstructure. Mater Res Soc Symp Proc 474:9–14

    Article  Google Scholar 

  66. Jia CL, Urban K, Hoffmann S, Waser R (1998) Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition. J Mater Res 13:2206–2217

    Article  Google Scholar 

  67. Schwartz RW, Clem PG, Voigt JA, Byhoff ER, Van Stry M, Headley TJ, Missert NA (1999) Control of microstructure and orientation in solution deposited BaTiO3 and SrTiO3 thin films. J Am Ceram Soc 82:2359–2367

    Article  Google Scholar 

  68. Schwartz RW, Voigt JA, Tuttle BA, DaSalla RS, Payne DA (1997) Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived PZT thin films. J Mater Res 12:444–456

    Article  Google Scholar 

  69. Schwartz RW, Dobberstein H (2003) Modeling structural evolution in ferroelectric thin films. In: Proceedings of the 11th US-Japan Sem Diel Piezo Ceram. Sapporo, Japan, pp. 215–218

    Google Scholar 

  70. Dobberstein H (2002) A thermodynamic and kinetic model for nucleation and growth in solution derived thin films. Dissertation, Clemson University

    Google Scholar 

  71. Kingery WD, Bowen HK, Uhlman DR (1960) Introduction to ceramics. Wiley, New York

    Google Scholar 

  72. Chiang YM, Birnie D III, Kingery WD (1997) Physical ceramics, principles for ceramic science and engineering. Wiley, New York

    Google Scholar 

  73. Doremus RH (1994) Glass science, 2nd edn. Wiley, New York

    Google Scholar 

  74. McMillan PW (1979) Glass-ceramics, 2nd edn. Academic, London

    Google Scholar 

  75. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Miner (Metall) Eng 135:416–458

    Google Scholar 

  76. Avrami M (1939) Kinetics of phase change. J Chem Phys 7:1103–1112

    Article  Google Scholar 

  77. Malek J, Criado JM (1992) Empirical kinetic models in thermal analysis. Thermochim Acta 203:25–30

    Article  Google Scholar 

  78. Malek J, Criado JM (1994) A simple method of kinetic model discrimination. Part 1. analysis of differential non-isothermal data. Thermochim Acta 236:187–197

    Article  Google Scholar 

  79. Schwartz RW, Lakeman CDE, Payne DA (1990) The effects of hydrolysis conditions, and acid and base additions, on the gel-to-ceramic conversion in sol-gel derived PbTiO3. Mater Res Soc Symp Proc 180:335–340

    Article  Google Scholar 

  80. Leikina BB, Kostikov YP, Olesk AO (1989) Effect of the chemical composition of titanium-containing raw material on the properties of BaTiO3. Neorg Mater 25:2050–2052

    Google Scholar 

  81. Gust MC, Momoda LA, MeCartney ML (1994) Microstructure and crystallization behavior of sol-gel prepared BaTiO3 thin films. Mater Res Soc Symp Proc 346:649–653

    Article  Google Scholar 

  82. Meyer B, Padilla J, Vanderbilt D (1999) Theory of PbTiO3, BaTiO3 and SrTiO3 surfaces. Faraday Discuss 114:395–405

    Article  Google Scholar 

  83. Eglitis RI, Vanderbilt D (2007) Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures. Phys Rev B 76:155439-1-9

    Article  Google Scholar 

  84. Sengupta SS, Ma L, Adler DL, Payne DA (1995) Extended x-ray absorption fine structure determination of local structure in sol-gel-derived lead titanate, lead zirconate and lead zirconate titanate. J Mater Res 10:1345–1348

    Article  Google Scholar 

  85. Arčon I, Malič B, Kosec M, Kodre A (1999) Study of the lead environment in liquid and as-dried precursors of PZ, PT and PZT thin films. J Sol-Gel Sci Technol 13:861–864

    Google Scholar 

  86. Lakeman CDE, Xu Z, Payne DA (1995) On the evolution of structure and composition in sol-gel-derived lead zirconate titanate thin layers. J Mater Res 10:2042–2051

    Article  Google Scholar 

  87. Mosset A, Gautier-Luneau I, Galy J, Strehlow P, Schmidt H (1988) Sol-gel processed BaTiO3: structural evolution from the gel to the crystalline powder. J Non-Cryst Solids 100:339–344

    Article  Google Scholar 

  88. Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028

    Article  Google Scholar 

  89. Tong S (2012) Dielectric and ferroelectric properties of lead lanthanum zirconate titanate thin films for capacitive energy storage. PhD dissertation, University of Cincinnati

    Google Scholar 

  90. Cheng J, Zhu W, Li N, Cross LE (2002) Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48) O3 thin films on a PbTiO3-coated stainless steel substrate. Appl Phys Lett 81:4805–4807

    Article  Google Scholar 

  91. Kwok CK, Desu SB (1993) Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J Mater Res 8:339–344

    Article  Google Scholar 

  92. Al-Shareef HN, Bellur KR, Auciello O, Kingon AI (1994) Effect of electrodes on the phase evolution and microstructure of Pb(Zr0.53Ti0.47)O3 films. Ferroelectrics 152:85–90

    Article  Google Scholar 

  93. Tani T, Lakeman CDE, Li JF, Xu Z, Payne DA (1994) Crystallization behavior and improved properties for sol-gel derived PZT and PLZT thin layers processed with a lead oxide cover coating. Ceramic Trans 43:89–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Schwartz, R.W., Narayanan, M. (2013). Thermodynamics and Heating Processes. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_15

Download citation

Publish with us

Policies and ethics