Skip to main content

Abstract

In this chapter a wide a range of examples—from the putative simple dip coating process, where a substrate is withdrawn from the coating solution at a constant rate, to the more advanced evaporation induced self-assembly (EISA) process, which leads to well-ordered nanostructured thin-film materials—is covered. In the first part the fundamentals of classical dip coating are presented. Various physical and chemical effects which influence the thickness and microstructure evolution are discussed. The film thickness is set by the competition among viscous force, capillary force, and gravity. Microstructure and properties of the film e.g. depend on the size and structure of the inorganic precursor species, the magnitude of the capillary pressure exerted during drying, and the relative rates of condensation and drying. After the basic aspects modified dip coating techniques which enable the coating of differently shaped substrates such as cylinders, tubes and bottles are briefly presented. Finally different aspects of the EISA process, which is based on the fact that in dip coating film formation occurs through evaporation of solvents concentrating the system in non-volatile species, is shortly reviewed. Thus by means of the silica/surfactant system it is presented how aggregation & gelation can be controlled and functional nanoscopic materials can be generated. It is also briefly shown that EISA can be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geffcken W, Berger E (1939) Verfahren zur Änderung des Reflexionsvermögens optischer Gläser. Deutsches Reichspatent, assigned to Jenaer Glaswerk Schott & Gen., Jena 736 411

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol–gel processing. Academic, San Diego

    Google Scholar 

  3. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  4. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–342

    Article  Google Scholar 

  5. Brinker CJ, Hurd AJ, Frye GC, Schunk PR, Ashley CS (1991) Sol-gel thin film formation. J Ceram Soc Jpn 99:862–877

    Article  Google Scholar 

  6. Scriven LE (1988) Physics and application of dip-coating and spin-coating. In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry III, vol 121, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, pp 717–729

    Google Scholar 

  7. Landau LD, Levich VG (1942) Dragging of a liquid by a moving plate. Acta Phys Chim URSS 17:42–54

    Google Scholar 

  8. Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21:17033–17038

    Article  Google Scholar 

  9. Faustini M, Louis B, Albouy PA, Kuemmel M, Grosso D (2010) Preparation of sol-gel films by dip-coating in extreme conditions. J Phys Chem C 114:7637–7645

    Article  Google Scholar 

  10. Lee CH, Lu YF, Shen AQ (2006) Evaporation induced self-assembly and rheology change during sol-gel coating. Phys Fluids 18:052105–052111

    Article  Google Scholar 

  11. Brinker CJ, Hurd AJ, Schunk PR, Ashley CS (1992) Review of sol-gel thin film formation. J Non Cryst Solids 147–148:424–436

    Article  Google Scholar 

  12. Hurd AJ, Brinker CJ (1988) Optical sol-gel coatings ellipsometry of film formation. J Phys France 49:1017–1025

    Article  Google Scholar 

  13. Nishida F, Dunn B, Mckiernan JM, Zink JI, Brinker CJ, Hurd AJ (1994) In situ fluorescence imaging of sol-gel thin film deposition. J Sol-Gel Sci Technol 2:477–481

    Article  Google Scholar 

  14. Nishida F, Mckiernan JM, Dunn B, Zink JI, Brinker CJ, Hurd AJ (1995) In situ fluorescence probing of the chemical changes during sol-gel thin film formation. J Am Ceram Soc 78:1640–1648

    Article  Google Scholar 

  15. Hurd AJ (1994) Evaporation and surface tension effects in dip coating. In: Bergna HE (ed) The colloid chemistry of silica, vol 234, Advances in chemistry series. American Chemical Society, Washington, DC, pp 433–450, Chapter 21

    Chapter  Google Scholar 

  16. Hurd AJ, Brinker CJ (1990) Sol­gel film formation by dip coating. In: Zelinski BJJ, Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry IV, vol 180, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, pp 575–581

    Google Scholar 

  17. Schwartz RW, Voigt JA, Buchheit CD, Boyle TJ (1994) Densification and crystallization of zirconia thin films prepared by sol-gel processing. Ceram Trans 43:145–163

    Google Scholar 

  18. Scherer GW (1992) Recent progress in drying of gels. J Non-Cryst Solids 147–148:363–374

    Article  Google Scholar 

  19. Croll SG (1979) The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polymer Sci 23:847–853

    Article  Google Scholar 

  20. Evans AJ, Dory MD, Hu MS (1988) The cracking and decohesion of thin films. J Mater Res 3:1043–1054

    Article  Google Scholar 

  21. Thouless MD (1988) Decohesion of films with axisymetric geometrics. Acta Metall 36:3131–3139

    Article  Google Scholar 

  22. Meakin P (1991) Models for materials failure and deformation. Science 252:226–229

    Article  Google Scholar 

  23. Atkinson A, Guppy RM (1991) Mechanical stability of sol-gel films. J Mater Sci 26:3869–3875

    Article  Google Scholar 

  24. Garino TJ (1990) The cracking of sol-gel thin films during drying. In: Zelinski BJJ, Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry IV, vol 180, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, pp 497–502

    Google Scholar 

  25. Cohen ED, Gutoff EB, Lightfoot EJ (1990) A primer on forming coatings. Chem Eng Prog 86:30–36

    Google Scholar 

  26. Takahashi Y, Matsuoka Y, Yamaguchi K, Matsuki M, Kobayashi K (1990) Dip coating of PT, PZ, and PZT films using an alkoxide-diethanolamine method. J Mater Sci 25:3960–3964

    Article  Google Scholar 

  27. Schmidt H, Rinn G, Nass R, Sporn D (1988) Film formation by inorganic-organic sol-gel synthesis. In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry III, vol 121, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, pp 743–752

    Google Scholar 

  28. Garino TJ (1988) PhD Thesis, MIT

    Google Scholar 

  29. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol–gel processing. Academic, San Diego, pp 235–301, Chapter 4

    Google Scholar 

  30. Bhave RR (ed) (1991) Inorganic membranes. Van Nostrand Reinhold, New York (many examples are provided)

    Google Scholar 

  31. Brinker CJ, Hurd AJ, Frye GC, Ward KJ, Ashley CS (1990) Sol-gel thin film formation. J Non-Cryst Solids 121:294–308

    Article  Google Scholar 

  32. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol–gel processing. Academic, San Diego, pp 493–505, Chapter 8

    Google Scholar 

  33. Deshpande R, Hua D-W, Smith DM, Brinker CJ (1992) Pore structure evolution in silica gels during aging and drying: 3. Effects of surface tension. J Non-Cryst Solids 144:32–43

    Article  Google Scholar 

  34. Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201:97–108

    Article  Google Scholar 

  35. Warren WL, Lenahan PM, Brinker CJ, Shaffer GR, Ashley CS, Reed ST (1990) Sol-gel thin film electronic properties. In: Zelinski BJJ, Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry IV, vol 180, Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, PA, pp 413–419

    Google Scholar 

  36. Puetz J, Aegerter MA (2004) Dip coating technique. In: Aegerter MA, Mennig M (eds) Sol-gel technologies for glass producers and users, 1st edn. Kluwer, Boston

    Google Scholar 

  37. Schröder H (1969) Oxide layers deposited from organic solutions. In: Hass G, Thun RE (eds) Physics of thin films, vol 5. Academic, London, pp 87–141

    Google Scholar 

  38. Arfsten NI, Eberle A, Otto J, Reich A (1997) Investigations on the angle-dependent dip coating technique (ADDC) for the production of optical filters. J Sol-Gel Sci Technol 8:1099–1104

    Google Scholar 

  39. Mennig M, Oliveira PW, Frantzen A, Schmidt H (1999) Multilayer NIR reflective coatings on transparent plastic substrates from photopolymerizable nanoparticulate sols. Thin Solid Films 351:225–229

    Article  Google Scholar 

  40. Tallmadge IA (1971) A theory of entrainment for angular withdrawal of flat supports. AIChE J 17:243–246

    Article  Google Scholar 

  41. Puetz J, Chalvet FN, Aegerter MA (2003) Wet chemical deposition of transparent conducting coatings in glass tubes. Thin Solid Films 442:53–59

    Article  Google Scholar 

  42. Brinker CJ (2004) Evaporation-induced self-assembly: functional nanostructures made easy. MRS Bull 29:631–639

    Article  Google Scholar 

  43. Brinker CJ, Lu YF, Sellinger A, Fan HY (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  Google Scholar 

  44. Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226

    Article  Google Scholar 

  45. Lu YF, Cao GZ, Kale RP, Prabakar S, Lopez GP, Brinker CJ (1999) Microporous silica prepared by organic templating: relationship between the molecular template and pore structure. Chem Mater 11:1223–1229

    Article  Google Scholar 

  46. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389:364–368

    Article  Google Scholar 

  47. Hurd AJ, Steinberg L (2001) The physics of evaporation-induced assembly of sol-gel materials. Granul Matter 3:19–21

    Article  Google Scholar 

  48. Kresge C, Leonowicz M, Roth W, Vartuli C, Beck J (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  49. Huo Q, Margolese D, Ciesla U, Feng P, Gier TG, Sieger P, Leon R, Petroff PM, Schuth F, Stucky G (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368:317–321

    Article  Google Scholar 

  50. Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143

    Article  Google Scholar 

  51. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867

    Article  Google Scholar 

  52. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed Engl 34:2014–2017

    Article  Google Scholar 

  53. Zhao D, Feng J, Huo Q, Nelosh N, Fredrickson G, Chmelka B, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  54. Aksay I, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger P, Gruner S (1996) Biomimetic pathways for assembling inorganic thin films. Science 273:892–898

    Article  Google Scholar 

  55. Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Synthesis of oriented films of mesoporous silica on mica. Nature 379:703–705

    Article  Google Scholar 

  56. Ogawa M (1996) A simple sol–gel route for the preparation of silica–surfactant mesostructured materials. Chem Commun 1996:1149–1150

    Article  Google Scholar 

  57. Göltner CG, Antonietti M (1997) Mesoporous materials by templating of liquid crystalline phases. Adv Mater 9:431–436

    Article  Google Scholar 

  58. Bruinsma PJ, Kim AY, Liu J, Baskaran S (1997) Mesoporous silica synthesized by solvent evaporation: spun fibers and spray-dried hollow spheres. Chem Mater 9:2507–2512

    Article  Google Scholar 

  59. Ogawa M (1994) Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem Soc 116:7941–7942

    Article  Google Scholar 

  60. Yang H, Coombs N, Sokolov I, Ozin GA (1996) Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature 381:589–592

    Article  Google Scholar 

  61. Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, López GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405:56–60

    Article  Google Scholar 

  62. Pang J, Stuecker JN, Jiang Y, Bhakta AJ, Branson ED, Li P, Cesarano J III, Sutton D, Calvert P, Brinker CJ (2008) Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks. Small 4:982–989

    Article  Google Scholar 

  63. Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG Jr, Hurd AJ, Brinker CJ (2000) Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290:107–111

    Article  Google Scholar 

  64. Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein A, Tolbert SH, Perlich J, Dunn B, Brezesinski T (2011) Ordered mesoporous α-Fe2O3 (Hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. Small 7:407–414

    Article  Google Scholar 

  65. Kuemmel M, Grosso D, Boissière C, Smarsly B, Brezesinski T, Albouy PA, Amenitsch H, Sanchez C (2005) Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew Chem Int Ed 44:4589–4592

    Article  Google Scholar 

  66. Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissieère C, Antonietti M, Sanchez C (2004) Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template. Chem Mater 16:2948–2952

    Article  Google Scholar 

  67. Grosso D, Boissière C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat Mater 3:787–792

    Article  Google Scholar 

  68. Grosso D, Cagnol F, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14:309–322

    Article  Google Scholar 

  69. Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink RA, Gong W, Brinker CJ (1998) Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 394:256–260

    Article  Google Scholar 

  70. Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns Alan R, Sasaki DY, Shelnutt J, Brinker CJ (2001) Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410:913–917

    Article  Google Scholar 

  71. Yang Y, Lu Y, Lu M, Huang J, Haddad R, Xomeritakis G, Liu N, Malanoski AP, Sturmayr D, Fan H, Sasaki DJ, Assink RA, Shelnutt JA, van Swol F, Lopez GP, Burns AR, Brinker CJ (2003) Functional nanocomposites prepared by self-assembly and polymerization of diacetylene surfactants and silicic acid. J Am Chem Soc 125:1269–1277

    Article  Google Scholar 

  72. Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, Brinker CJ (2004) Self-assembly of ordered, robust, three-dimensional gold/silica nanocrystal arrays. Science 304:567–571

    Article  Google Scholar 

  73. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  Google Scholar 

  74. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338

    Article  Google Scholar 

  75. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Nanocrystal superlattices monodisperse FePt nanoparticles and ferromagnetic FePt. Science 287:1989–1992

    Article  Google Scholar 

  76. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  Google Scholar 

  77. Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jeffrey Brinker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Brinker, C.J. (2013). Dip Coating. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_10

Download citation

Publish with us

Policies and ethics