Skip to main content

Simple Alkoxide Based Precursor Systems

  • Chapter
  • First Online:
Chemical Solution Deposition of Functional Oxide Thin Films

Abstract

Along with the metal carboxylates (Chap. 2), metal alkoxides represent the most frequently applied class of chemical educts for coating solution synthesis. In this chapter, some fundamental aspects of metal alkoxides, which are important for the understanding of the different CSD approaches presented in other chapters of this book, are briefly reviewed. This includes structural aspects and their reactivity towards nucleophilic agents, such as water, alcohols etc. The basics of the sol-gel transition are also given, and how the reactivity of metal alkoxides can be modulated in order to stabilize them for coating solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The second, largely new edition of this popular book appeared in 2001 [1].

  2. 2.

    The metal methoxides are typically polymeric and do not dissolve in organic solvents. They decompose without melting and cannot be evaporated [3].

  3. 3.

    In contrast to single-source precursors (see Chap. 4), where well defined heterometallic precursor molecules are synthesized and used as precursors in the coating solution, multi-source means that individual educts, which could be alkoxides, carboxylates, nitrates are mixed together in such a way, that a chemically stable one-pot precursor solution results (see e.g. Chap. 3).

  4. 4.

    It should be noted that Kessler et al. [59] argumented that metal alkoxides are rather Lewis bases and very weak Lewis acids and that ligand exchange and hydrolysis proceeds through a proton assisted SN1 mechanism with a number of consequences. It is not the aim of this chapter to discuss this issue. In order to use and modify metal alkoxides for CSD precursor solution synthesis, as well as understanding the behavior at least on a qualitative level, the classical model description for the sol-gel behavior of alkoxides is very illustrative and will be therefore presented here.

  5. 5.

    Metal salts are not subject of this chapter. However the hint to the similarity in the hydrolysis and condensation scheme is given, because metal salts in aqueous media are used in the chemical bath deposition technique, which is described in Chap. 14.

  6. 6.

    In case of multicomponent Ti(OR)4 based precursor solutions often 2 equivalents of Hacac are used.

References

  1. Bradley DC, Mehrotra RC, Rothwell IP, Singh A (2001) Alkoxo and aryloxo derivatives of metals. Academic, London

    Google Scholar 

  2. Bradley DC, Mehrotra RC, Gaur DP (1978) Metal alkoxides. Academic, New York

    Google Scholar 

  3. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya AI (2002) The chemistry of metal alkoxides. Kluwer AP, Boston

    Google Scholar 

  4. Schubert U (2005) Chemical modification of titanium alkoxides for sol-gel processing. J Mater Chem 15:3701–3715

    Google Scholar 

  5. Shreider VA, Turevskaya EP, Koslova NI, Turova NY (1981) Direct electrochemical synthesis of metal alkoxides. Inorg Chim Acta 53:L73–L76

    Google Scholar 

  6. Sedlar M, Sayer M (1995) Reactivity of titanium isopropoxide, zirconium propoxide and niobium ethoxide in the system of 2-methoxyethanol, 2,4-pentadione and water. J Sol-Gel Sci Technol 5:27–40

    Google Scholar 

  7. Hoebbel D, Reinert T, Schmidt H, Arpac E (1997) On the hydrolytic stability of organic ligands in Al-, Ti- and Zr-alkoxide complexes. J Sol-Gel Sci Technol 10:115–126

    Google Scholar 

  8. Glaubitt W, Sporn D, Jahn R (1994) A new way to spinnable sols derived from modified aluminumalkoxides. J Sol-Gel Sci Technol 2:525–528

    Google Scholar 

  9. Fric H, Kogler FR, Puchberger M, Schubert U (2004) Structural chemistry of titanium alkoxides substituted by the chelating bidentate ligands isoeugenolate or 2-aminoethanolate. Z Naturforsch 59b:1241–1245

    Google Scholar 

  10. Ban T, Ohya Y, Takahashi Y (2003) Reaction of titanium isopropoxide with alkanolamines and association of the resultant Ti species. J Sol-Gel Sci Technol 27:363–372

    Google Scholar 

  11. Harlow R (1983) Dimer of (2,2′,2″-nitrilotriethanolato)(2-propanolato)titanium(IV), [Ti2(C6H12NO3)2(C3H7O)2]. Acta Crystallogr, Sect C: Cryst Struct Commun 39:1344–1346

    Google Scholar 

  12. Menge WMPB, Verkade JG (1991) Monomeric and dimeric titanatranes. Inorg Chem 30:4628–4631

    Google Scholar 

  13. Pierre A (1998) Introduction to sol-gel processing. Kluwer, Dordrecht

    Google Scholar 

  14. Dahl LF, Davis GL, Wampler DL, West R (1962) The molecular and crystal structure of thallium (I) methoxide. J Inorg Nucl Chem 24:357–363

    Google Scholar 

  15. Chisholm MH, Drake SR, Naiini AA, Streib WE (1991) Synthesis and X-ray crystal structures of the one-dimensional ribbon chains [MOBut•ButOH] and the cubane species [MOBut]4 (M = K and Rb). Polyhedron 10:337–345

    Google Scholar 

  16. Weiss E, Alsdorf H, Kühr H, Grützmacher HF (1968) Röntgenographische, NMR- und massenspektrometrische Untersuchungen der tert.-Butylate des Kaliums, Rubidiums und Caesiums. Chem Ber 101:3777–3786

    Google Scholar 

  17. Weiss E, Alsdorf H, Kühr H (1967) Structure of alkali metal t-butoxides. Angew Chem Int Ed Engl 9:801–802

    Google Scholar 

  18. Mann S, Jansen M (1994) Crystal structure of cesium-tert-butanolate, CsOC4H9. Cryst Mater 209:852

    Google Scholar 

  19. Cayton RH, Chisholm MH, Davidson ER, DiStasi VF, Du P, Huffman JC (1991) Crystal and molecular structure of hexakis(tert-butoxo)dialuminum. Comments on the extent of M-O π bonding in Group 6 and Group 13 alkoxides. Inorg Chem 30:1020–1024

    Google Scholar 

  20. Shiner VJ, Whittaker D, Fernandez VP (1963) The structures of some aluminum alkoxides. J Am Chem Soc 85:2318–2322

    Google Scholar 

  21. Folting K, Streib WE, Caulton KG, Poncelet O, Hubert-Pfalzgraf LG (1991) Characterization of aluminum isopropoxide and aluminosiloxanes. Polyhedron 10:1639–1646

    Google Scholar 

  22. Turova NY, Kozunov VA, Yanovskii AI, Borkii NG, Struchkov YT, Tarnopolskii BL (1979) Physico-chemical and structural investigation of aluminium isopropoxide. J Inorg Nucl Chem 41:5–11

    Google Scholar 

  23. Babonneau F, Doeuff S, Leaustic A, Sanchez C, Cartier C, Verdaguer M (1988) XANES and EXAFS study of titanium alkoxides. Inorg Chem 27:3166–3172

    Google Scholar 

  24. Ibers JA (1963) Crystal and molecular Structure of titanium (IV) ethoxide. Nature 197:686–687

    Google Scholar 

  25. Chisholm MH, Huffman JC, Leonelli J (1981) Hexadecamethoxy- and hexadecaethoxy-tetratungsten: preparation and X-ray crystal and molecular structure of W4(OEt)16. J Chem Soc Chem Commun 1981:270

    Google Scholar 

  26. Bradley DC, Mehrotra RC, Swanwick JD, Wardlaw W (1953) Structural chemistry of the alkoxides. Part IV. Normal alkoxides of silicon, titanium, and zirconium. J Chem Soc 1953:2025–2030

    Google Scholar 

  27. Veith M, Mathur S, Mathur C, Huch V (1997) Synthesis, reactivity and structures of hafnium-containing homo- and hetero- (bi- and tri-) metallic alkoxides based on edge- and face-sharing bioctahedral alkoxometalate ligands. J Chem Soc, Dalton Trans 1997(12):2101–2108

    Google Scholar 

  28. Vaartstra BA, Huffman JC, Gradeff PS, Hubert-Pfalzgraf LG, Daran JC, Parraud S, Yunlu K, Caulton KG (1990) Alcohol adducts of alkoxides: intramolecular hydrogen bonding as a general structural feature. Inorg Chem 29:3126–3131

    Google Scholar 

  29. Fric H, Schubert U (2005) Amine adducts of titanium tetraalkoxides. New J Chem 29:232–236

    Google Scholar 

  30. Bradley DC, Wardlaw W, Whitley A (1955) Normal alkoxides of quinquevalent tantalum. J Chem Soc 1955:726–728

    Google Scholar 

  31. Bradley DC, Chakravarti BN, Wardlaw W (1956) Normal alkoxides of quinquevalent niobium. J Chem Soc 1956:2381–2384

    Google Scholar 

  32. Pinkerton AA, Schwarzenbach D, Hubert-Pfalzgraf LG, Riess JG (1976) Crystal and molecular structure of niobium pentamethoxide – a structure with two different conformers in the unit cell. Inorg Chem 15:1196–1199

    Google Scholar 

  33. Eichhorst DJ, Howard KE, Payne DA (1992) NMR investigations of lithium niobium alkoxide solutions. In: Uhlmann DR, Ulrich DR (eds) Ultrastructure processing of advanced materials. John Wiley, New York, pp 87–93, Chapter 8

    Google Scholar 

  34. Bradley DC, Holloway CE (1968) Nuclear magnetic resonance studies on niobium and tantalum penta-alkoxides. J Chem Soc A 1968:219–223

    Google Scholar 

  35. Haaland A, Rypdal K, Volden HV, Jacob E, Weidlein J (1989) The molecular structure of tungsten hexamethoxide, W(OCH3)6, by gas electron diffraction. Acta Chem Scand 43:911–913

    Google Scholar 

  36. Tatzel G, Greune M, Weidlein J, Jacob E (1986) Schwingungsspektren und Kraftkonstanten von W(OCH3)6, Mo(OCH3)6 und [Sb(CH3)4][Sb(OCH3)6]. Z Anorg Allg Chem 533:83–92

    Google Scholar 

  37. Jacob E (1982) Metallhexamethoxides. Angew Chem Int Ed Engl 21:142–143

    Google Scholar 

  38. Bradley DC, Chisholm MH, Extine MW, Stager ME (1977) Some reactions of hexakis(dimethylamido)tungsten(VI). Inorg Chem 16:1794–1801

    Google Scholar 

  39. Bradley DC, Mehrotra RC, Wardlaw W (1952) Structural chemistry of the alkoxides. Part II. Tertiary alkoxides of silicon, titanium, zirconium, and hafnium. J Chem Soc 1952:4204–4209

    Google Scholar 

  40. Bradley DC, Mehrotra RC, Wardlaw W (1952) Structural chemistry of the alkoxides. Part III. Secondary alkoxides of silicon, titanium, and zirconium. J Chem Soc 1952:5020–5023

    Google Scholar 

  41. Bradley DC, Mehrotra RC, Wardlaw W (1952) Structural chemistry of the alkoxides. Part I. Amyloxides of silicon, titanium, and zirconium. J Chem Soc 1952:2027–2032

    Google Scholar 

  42. Bradley DC (1989) Metal alkoxides as precursors for electronic and ceramic materials. Chem Rev 89:1317–1322

    Google Scholar 

  43. Peter D, Ertel TS, Bertagnolli H (1994) EXAFS study of zirconium alkoxides as precursor in the sol-gel process: I. Structure investigation of the pure alkoxides. J Sol-Gel Sci Technol 3:91–99

    Google Scholar 

  44. Bradley DC, Caldwell EV, Wardlaw W (1957) The preparation and properties of stannic alkoxides. J Chem Soc 1957:4775–4778

    Google Scholar 

  45. Bradley DC, Chatterjee AK, Wardlaw W (1956) Structural chemistry of the alkoxides. Part VI. Primary alkoxides of quadrivalent cerium and thorium. J Chem Soc 1956:2260–2264

    Google Scholar 

  46. Caulton KG, Hubert-Pfalzgraf LG (1990) Synthesis, structural principles, and reacticity of heterometallic alkoxides. Chem Rev 90:969–995

    Google Scholar 

  47. Mehrotra RC, Batwara JM, Kapoor PN (1980) Coordination chemistry of lanthanides with emphasis on derivatives with Ln-O-C bonds. Coord Chem Rev 31:67–91

    Google Scholar 

  48. Gugliemi M, Carturan G (1988) Precursors for sol-gel preparations. J Non-Cryst Solids 100:16–30

    Google Scholar 

  49. Hubert-Pfalzgraf LG (2004) To what extent can design of molecular precursors control the preparation of high tech oxides? J Mater Chem 14:3113–3123

    Google Scholar 

  50. Hasenkox U, Hoffmann S, Waser R (1998) Influence of precursor chemistry on the formation of MTiO3 (M=Ba, Sr) ceramic thin films. J Sol-Gel Sci Technol 12:67–79

    Google Scholar 

  51. Gust MC, Evans ND, Momoda LA, Mecartney ML (1997) In-situ transmission electron microscopy crystallization studies of sol-gel-derived barium titanate thin films. J Am Ceram Soc 80:2828–2836

    Google Scholar 

  52. Malic B, Kosec M, Arcon I, Kodre A (2005) Homogeneity issues in chemical solution deposition of Pb(Zr,Ti)O3 thin films. J Eur Ceram Soc 25:2241–2246

    Google Scholar 

  53. Lakeman CDE, Xu Z, Payne DA (1995) On the evolution of structure and composition in sol-gel-derived lead-zirconate-titanate thin-layers. J Mater Res 10:2042–2051

    Google Scholar 

  54. Tuttle BA, Headley TJ, Bunker BC, Schwartz RW, Zender TJ, Hernandez CJ, Goodnow DC, Tissot RJ, Michael J, Carim AH (1992) Microstructural evolution of Pb(Zr,Ti)O3 thin-films prepared by hybrid metalloorganic decomposition. J Mater Res 7:1876–1882

    Google Scholar 

  55. Roescher M, Tappertzhofen S, Schneller T (2011) Precursor homogeneity and crystallization effects in chemical solution deposition-derived alkaline niobate thin films. J Am Ceram Soc 94:2193–2199

    Google Scholar 

  56. Chowdhury A, Bould J, Londesborough MGS, Milne SJ (2010) Fundamental issues in the synthesis of ferroelectric Na0.5K0.5NbO3 thin films by sol-gel processing. Chem Mater 22:3862–3874

    Google Scholar 

  57. Derderian GJ, Barrie JD, Aitchison KA, Adams PM, Mecartney ML (1993) Microstructural changes due to process conditions in sol-gel derived KNbO3 thin films. Mater Res Soc Symp Proc 310:339–343

    Google Scholar 

  58. Livage J, Ganguli D (2001) Sol-gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells 68:365–381

    Google Scholar 

  59. Kessler VG, Spijksma GI, Seisenbaeva GA, Håkansson S, Blank DHA, Bouwmeester HJM (2006) New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursor: a possibility to approach new classes of materials. J Sol-Gel Sci Technol 40:163–179

    Google Scholar 

  60. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Google Scholar 

  61. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol–gel processing. Academic, San Diego

    Google Scholar 

  62. Sanchez C, Livage J, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non-Cryst Solids 100:65–76

    Google Scholar 

  63. Bradley DC, Carter DG (1961) Metal oxide alkoxide polymers. Canadian J Chem 39:1434–1443

    Google Scholar 

  64. Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21:1087–1092

    Google Scholar 

  65. Livage J, Babonneau F, Sanchez C (1991) Some aspects of the chemistry of transition metal oxide gels. In: Harrod JF, Laine RM (eds) Inorganic and organometallic oligomers and polymers. Springer, Netherlands, pp 217–228

    Google Scholar 

  66. Livage J, Henry M, Jolivet JP, Sanchez C (1990) Chemical synthesis of fine powders. Mater Res Soc Bull 15:18–25

    Google Scholar 

  67. Aelion R, Loebel A, Elrich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72:5705–5712

    Google Scholar 

  68. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55

    Google Scholar 

  69. Schubert U (2003) Sol-gel processing of metal compounds. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 7. Pergamon, Oxford, pp 629–656

    Google Scholar 

  70. Kamiya K, Ohya M, Yoko T (1986) Nitrogen-containing SiO2 glass fibers prepared by ammonolysis of gels made from silicon alkoxides. J Non-Cryst Solids 83:208–222

    Google Scholar 

  71. Nabavi M, Doeuff S, Sanchez C, Livage J (1990) Chemical modification of metal alkoxides by solvents: a way to control sol-gel chemistry. J Non-Cryst Solids 121:31–34

    Google Scholar 

  72. Mehrotra RC, Bohra R, Gaur DP (1978) Metal ß-diketonates and allied derivatives. Academic, London

    Google Scholar 

  73. Hubert-Pfalzgraf LG, Guillon H (1998) Trends in precursor design for conventional and aerosol-assisted CVD of high-Tc superconductors. Appl Organometal Chem 12:221–236

    Google Scholar 

  74. Yamaguchi N, Tadanaga K, Matsuda A, Minami T, Tatsumisago M (2007) Antireflective properties of flowerlike alumina thin films on soda-lime silica glass substrates prepared by the sol-gel method with hot water treatment. Thin Solid Films 515:3914–3917

    Google Scholar 

  75. Saifullah MSM, Kang DJ, Subramanian KRV, Welland ME, Yamazaki K, Kurihara K (2004) Electron beam nanolithography of β-ketoester modified aluminium tri-sec-butoxide. J Sol-Gel Sci Technol 29:5–10

    Google Scholar 

  76. Bonhomme-Coury L, Babonneau F, Livage J (1994) Investigation of the sol-gel chemistry of ethylacetoacetate modified aluminum sec-butoxide. J Sol-Gel Sci Technol 3:157–168

    Google Scholar 

  77. Tadanaga K, Iwami T, Tohge N, Tsutomu M (1994) Precursor structure and hydrolysis-gelation process of Al(O-sec-Bu)3 modified with ethylacetoacetate. J Sol-Gel Sci Technol 3:5–10

    Google Scholar 

  78. Uchihashi H, Tohge N, Minami T (1989) Preparation of amorphous Al2O3 thin films from stabilized Al-alkoxides by the sol-gel method. J Ceram Soc Jpn 97:396–399

    Google Scholar 

  79. Jain R, Rai A, Mehrotra R (1986) Synthesis and spectral studies of β-diketone and β-ketoester derivatives of aluminium zirconium isopropoxide. Polyhedron 5:1017–1021

    Google Scholar 

  80. Yamamoto A, Kambara S (1957) Structures of the reaction products of tetraalkoxytitanium with acetylacetone and ethyl acetoacetate. J Am Chem Soc 74:4344–4348

    Google Scholar 

  81. Unuma H, Tokoka T, Suzuki Y, Furusaki T, Kodaira K, Hatsushida T (1986) Preparation of transparent amorphous tungsten trioxide thin films by a dip-coating method. J Mater Sci Lett 5:1248–1250

    Google Scholar 

  82. Leaustic A, Babonneau F, Livage J (1989) Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPri, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chem Mater 1:240–247

    Google Scholar 

  83. Emeli M, Incoccia L, Mobilio S, Fagherazzi G, Guglielmi M (1985) Structural investigations of TiO2/SiO2 glassy and glass-ceramic materials prepared by the sol-gel method. J Non-Cryst Solids 74:129–146

    Google Scholar 

  84. Debsikdar JC (1986) Transparent zirconia gel-monolith from zirconium alkoxide. J Non-Cryst Solids 86:231–240

    Google Scholar 

  85. Debsikdar JC (1985) Preparation of transparent non-crystalline stoichiometric magnesium aluminate gel-monolith by the sol-gel process. J Mater Sci 20:4454–4458

    Google Scholar 

  86. Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Stabilization and destabilization of zirconium propoxide precursors by acetylacetone. Chem Commun 2004:1874–1875

    Google Scholar 

  87. Errington RJ, Ridland J, Clegg W, Coxall RA, Sherwood JM (1998) Beta-diketonate derivatives of titanium alkoxides: X-ray crystal structures and solution dynamics [{Ti(OR)3(dik)}2]. Polyhedron 17:659–674

    Google Scholar 

  88. Bharara PC, Gupta VD, Mehrotra RC (1974) Reactions of titanium alkoxides with N-methylaminoalcohols. Z Anorg Allg Chem 403:337–346

    Google Scholar 

  89. Losego MD, Ihlefeld JF, Maria J (2008) Importance of solution chemistry in preparing sol-gel PZT thin films directly on copper surfaces. Chem Mater 20:303–307

    Google Scholar 

  90. Halder S, Schneller T, Waser R (2005) Crystallization temperature limit of (Ba,Sr)TiO3 thin films prepared by a nonoxocarbonate phase forming CSD route. J Sol-Gel Sci Technol 33:299–306

    Google Scholar 

  91. Kim SH, Kim DJ, Hong JG, Streiffer SK, Kingon AI (1999) Imprint and fatigue properties of chemical solution derived Pb1-xLax(ZryTi1-y)1-x/4O3 thin films. J Mater Res 14:1371–1377

    Google Scholar 

  92. Kato K, Tsuge A, Niihara K (1996) Microstructure and crystallographic orientation of anatase coatings produced from chemically modified titanium tetraisopropoxide. J Am Ceram Soc 79:1483–1488

    Google Scholar 

  93. Selvaraj U, Prasadarao AV, Komarneni S, Roy R (1992) Sol-gel fabrication of epitaxial and oriented TiO2 thin films. J Am Ceram Soc 75:1167–1170

    Google Scholar 

  94. Takahashi Y, Matsuoka Y (1988) Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system. J Mater Sci 23:2259–2266

    Google Scholar 

  95. Tohge N, Takahashi S, Minami T (1991) Preparation of PbZrO3-PbTiO3 ferroelectric thin films by the sol-gel process. J Am Ceram Soc 74:67–71

    Google Scholar 

  96. Fric H, Jupa M, Schubert U (2006) The solid-state structures of a non-hydrated yttrium carboxylate and a yttrium carboxylate hemihydrate obtained by reaction of yttrium alkoxides with carboxylic acids. Monatsh Chem 137:1–6

    Google Scholar 

  97. Kogler FR, Jupa M, Puchberger M, Schubert U (2004) Control of the ratio of functional and non-functional ligands in clusters of the type Zr6O4(OH)4(carboxylate)12 for their use as building blocks for inorganic-organic hybrid polymers. J Mater Chem 14:3133–3138

    Google Scholar 

  98. Urlaub R, Posset U, Thull R (2000) FT-IR spectroscopic investigations on sol-gel-derived coatings from acid-modified titanium alkoxides. J Non-Cryst Solids 265:276–284

    Google Scholar 

  99. Boyle TJ, Tyner RP, Alam TM, Scott BL, Ziller JW, Potter BG (1999) Implications for the thin-film densification of TiO2 from carboxylic acid-modified titanium alkoxides. Syntheses, characterizations, X-ray structures of Ti33-O)(O2CH)2(ONep)8, Ti33-O)(O2CMe)2(ONep)8, Ti63-O)6(O2CCHMe2)6(ONep)6, [Ti(μ-O2CCMe3)(ONep)3]2, and Ti33-O)(O2CCH2CMe3)2(ONep)8 (ONep = OCH2CMe3). J Am Chem Soc 121:12104–12112

    Google Scholar 

  100. Kickelbick G, Schubert U (1999) Hydroxy carboxylate substituted oxozirconium clusters. J Chem Soc, Dalton Trans 1999(8):1301–1306

    Google Scholar 

  101. Stenou N, Bonhomme C, Sanchez C, Vaissermann J, Hubert-Pfalzgraf LG (1998) A tetranuclear niobium oxo acetate complex. Synthesis, X-ray crystal structure, and characterization by solid-state and liquid-state NMR spectroscopy. Inorg Chem 37:901–910

    Google Scholar 

  102. Kickelbick G, Schubert U (1997) Oxozirconium methacrylate clusters: Zr6(OH)4O4(OMc)12 and Zr4O2(OMc)12 (OMc = methacrylate). Chem Ber 130:473–478

    Google Scholar 

  103. Boyle TJ, Schwartz RW (1994) An investigation of group(IV) alkoxides as property controlling reagents in the synthesis of ceramic materials. Comments Inorg Chem 16:243–278

    Google Scholar 

  104. Alam TM, Boyle TJ, Buchheit CD, Schwartz RW, Ziller JW (1994) Formation, structure, and material properties from the reaction product of M(OCHMe2)4 (M = Ti, Zr) and HOAc. Mater Res Soc Symp Proc 346:35–40

    Google Scholar 

  105. Schwartz RW, Boyle TJ, Voigt JA, Buchheit CD (1994) Densification and crystallization of zirconia thin films prepared by sol-gel processing. In: Bhalla AS, Nair KM, Lloyd IK, Yanagida H, Payne DA (eds) Ferroic materials: design, preparation, and characteristics, vol. 43. Ceramic Transactions, pp 145–163

    Google Scholar 

  106. Mehrotra R, Rai A (1991) Aluminium alkoxides, β-diketonates and carboxylates. Polyhedron 10:1967–1994

    Google Scholar 

  107. Sanchez C, Toledano P, Ribot F (1990) Molecular structure of metal alkoxide precursors. Mater Res Soc Symp Proc 180:47–59

    Google Scholar 

  108. Doeuff S, Dromzee Y, Taulelle F, Sanchez C (1989) Synthesis and solid- and liquid-state characterization of a hexameric cluster of titanium(IV): Ti62-O)23-O)22-OC4H9)2(OC4H9)6(OCOCH3)8. Inorg Chem 28:4439–4445

    Google Scholar 

  109. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non-Cryst Solids 89:206–216

    Google Scholar 

  110. Barboux-Doeuff S, Sanchez C (1994) Synthesis and characterization of titanium oxide-based gels synthesized from acetate modified titanium butoxide precursors. Mater Res Bull 29:1–13

    Google Scholar 

  111. Czakler M, Artner C, Schubert U (2012) Preparation of carboxylato-coordinated titanium alkoxides from carboxylic anhydrides: alkoxido group transfer from metal atom to carbonyl group. Eur J Inorg Chem 21:3485–3489

    Google Scholar 

  112. Schroeder H (1969) Oxide layers deposited from organic solutions. In: Hass G, Thun RE (eds) Physics of thin films: advances in research and development, vol 5. Academic, New York, pp 87–141

    Google Scholar 

  113. Nagase K, Shimizu Y, Miura N, Yamazoe N (1992) Electrochromism of vanadium-titanium oxide thin films prepared by spin-coating method. Appl Phys Lett 61:243–245

    Google Scholar 

  114. Kim Y, Francis LF (1993) Processing and characterization of porous TiO2 coatings. J Am Ceram Soc 76:737–742

    Google Scholar 

  115. Harris MT, Byers CH, Brunson RR (1988) A study of solvent effects on the synthesis of pure component and composite ceramic powders by metal alkoxide hydrolysis. Mater Res Soc Symp Proc 121:287–292

    Google Scholar 

  116. Keddie JL, Braun PV, Giannelis EP (1994) Interrelationship between densification, crystallization, and chemical evolution in sol-gel titania thin films. J Am Ceram Soc 77:1592–1596

    Google Scholar 

  117. Keddie JL, Giannelis EP (1991) Effect of heating rate on the sintering of titanium dioxide thin films: competition between densification and crystallization. J Am Ceram Soc 74:2669–2671

    Google Scholar 

  118. Hoebbel D, Reinert T, Schmidt H (1996) NMR and IR spectroscopic examination of the hydrolytic stability of organic ligands in metal alkoxide complexes and of oxygen bridged heterometal bonds. Mater Res Soc Symp Proc 435:461–467

    Google Scholar 

  119. Leaustic A, Babonneau F, Livage J (1989) Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids. Chem Mater 1:248–252

    Google Scholar 

  120. Chatry M, Henry M, In M, Sanchez C, Livage J (1994) The role of complexing ligands in the formation of non-aggregated nanoparticles of zirconia. J Sol-Gel Sci Technol 1:233–240

    Google Scholar 

  121. Ribot FC, Toledano P, Sanchez C (1991) Hydrolysis-condensation process of β-diketonates-modified cerium(IV) isopropoxide. Chem Mater 1:759–765

    Google Scholar 

  122. Duonghong D, Borgarello E, Graetzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690

    Google Scholar 

  123. Toledano P, In M, Sanchez C (1991) Synthesis and structure of the compound [Ti185-O)24-O)23-O)102-O)82-OBun)12(acac)2]. C R Acad Sci Ser II: Mec Phys Chim Sci Terre Univers 313:1247–1253

    Google Scholar 

  124. Babonneau F, Leaustic A, Livage J (1988) Structural investigation of the hydrolysis-condensation process of a modified titanium alkoxide. Mater Res Soc Symp Proc 121:317–322

    Google Scholar 

  125. Roescher M, Schneller T, Waser R (2010) Comments on the processing of the niobium component for chemical solution derived niobium oxide-based thin-films. J Sol-Gel Sci Technol 56:236–243

    Google Scholar 

  126. Dunuwila DD, Gagliardi CD, Berglund KA (1994) Application of controlled hydrolysis of titanium(IV) isopropoxide to produce sol-gel-derived thin films. Chem Mater 6:1556–1562

    Google Scholar 

  127. Ozer N, Tepehan F, Bozkurt N (1992) An “all-gel” electrochromic device. Thin Solid Films 219:193–198

    Google Scholar 

  128. Bahlawane N (2001) Novel sol-gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance. Thin Solid Films 396:126–130

    Google Scholar 

  129. Pascual R, Sayer M, Vasant Kumar CVR, Zou L (1991) Rapid thermal processing of zirconia thin films produced by the sol-gel method. J Appl Phys 70:2348–2352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodor Schneller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Schneller, T. (2013). Simple Alkoxide Based Precursor Systems. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_1

Download citation

Publish with us

Policies and ethics