Skip to main content

Present and potential future adjuvant issues in high-grade astrocytic glioma treatment

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 34))

Abstract

Despite major advances in the management of malignant gliomas of which glioblastomas represent the ultimate grade of malignancy, they remain characterized by dismal prognoses. Glioblastoma patients have a median survival expectancy of only 14 months on the current standard treatment of surgical resection to the extent feasible, followed by adjuvant radiotherapy plus temozolomide, given concomitantly with and after radiotherapy.

Malignant gliomas are associated with such dismal prognoses because glioma cells can actively migrate through the narrow extra-cellular spaces in the brain, often travelling relatively long distances, making them elusive targets for effective surgical management.

Clinical and experimental data have demonstrated that invasive malignant glioma cells show a decrease in their proliferation rates and a relative resistance to apoptosis (type I programmed cell death) as compared to the highly cellular centre of the tumor, and this may contribute to their resistance to conventional pro-apoptotic chemotherapy and radiotherapy. Resistance to apoptosis results from changes at the genomic, transcriptional and post-transcriptional level of proteins, protein kinases and their transcriptional factor effectors. The PTEN/PI3K/Akt/mTOR/NF-κB and the Ras/Raf/MEK/ERK signaling cascades play critical roles in the regulation of gene expression and prevention of apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer, notably glioblastomas. Monoclonal antibodies and low molecular-weight kinase inhibitors of these pathways are the most common classes of agents in targeted cancer treatment. However, most clinical trials of these agents as monotherapies have failed to demonstrate survival benefit.

Despite resistance to apoptosis being closely linked to tumorigenesis, tumor cells can still be induced to die by non-apoptotic mechanisms such as necrosis, senescence, autophagy (type II programmed cell death) and mitotic catastrophe. Temozolomide brings significant therapeutic benefits in glioblastoma treatment. Part of temozolomide cytotoxic activity is exerted through pro-autophagic processes and also through the induction of late apoptosis. Autophagy, type II programmed cell death, represents an alternative mechanism to overcome, at least partly, the dramatic resistance of many cancers to pro-apoptotic-related therapies.

Another way to potentially overcome apoptosis resistance is to decrease the migration of malignant glioma cells in the brain, which then should restore a level of sensitivity to pro-apoptotic drugs.

Recent series of studies have supported the concept that malignant gliomas might be seen as an orchestration of cross-talks between cancer cells, microenvironment, vasculature and cancer stem cells.

The present chapter focuses on (i) the major signaling pathways making glioblastomas resistant to apoptosis, (ii) the signaling pathways distinctly activated by pro-autophagic drugs as compared to pro-apoptotic ones, (iii) autophagic cell death as an alternative to combat malignant gliomas, (iv) the major scientific data already obtained by researchers to prove that temozolomide is actually a pro-autophagic and pro-apoptotic drug, (v) the molecular and cellular therapies and local drug delivery which could be used to complement conventional treatments, and a review of some of the currently ongoing clinical trials, (vi) the fact that reducing the levels of malignant glioma cell motility can restore pro-apoptotic drug sensitivity, (vii) the observation that inhibiting the sodium pump activity reduces both glioma cell proliferation and migration, (viii) the brain tumor stem cells as a target to complement conventional treatment.

With 4 Figures and 1 Table

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6: 203–08.

    Article  CAS  PubMed  Google Scholar 

  2. Alonso MM, Jiang H, Yokoyama T, et al. (2008) Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16: 487–93

    Article  CAS  PubMed  Google Scholar 

  3. Arcella A, Carpinelli G, Battaglia G, et al. (2005) Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 7: 236–45.

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 107: 241–46.

    Article  CAS  PubMed  Google Scholar 

  5. Barnburg JR, Wiggan ONP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12: 598–605

    Article  Google Scholar 

  6. Barwe SP, Anilkumar G, Moon SY, et al. (2005) Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell 6: 1082–94

    Article  CAS  Google Scholar 

  7. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nature Rev Cancer 4: 335–48.

    Article  CAS  Google Scholar 

  8. Blanco G (2005) NaK-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Neprol 25: 292–303.

    Article  CAS  Google Scholar 

  9. Camby I, LeMercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16: 137R–57R

    Article  CAS  PubMed  Google Scholar 

  10. Caruso DA, Orme LM, Neale AM, et al. (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology 6: 236–46

    Article  CAS  PubMed  Google Scholar 

  11. Chakravarti A, Zhai G, Suzuki Y, et al. (2004) The prognostic significance of phosphatidylinositol-3-kinase pathway activation in human gliomas. J Clin Oncol 22: 1926–33

    Article  CAS  PubMed  Google Scholar 

  12. Chang JE, Khuntia D, Robins HI, et al. (2007) Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol 5: 894–902, 907–15

    PubMed  Google Scholar 

  13. Chang SM, Parney IF, Huang W, et al. (2005) Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293: 557–64

    Article  CAS  PubMed  Google Scholar 

  14. Chinot OL, Barrié M, Fuentes S, et al. (2007) Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol 25: 1470–75

    Article  CAS  PubMed  Google Scholar 

  15. Choe G, Horvath S, Cloughesy TF, et al. (2003) Analysis of the phosphatidylinositol 3-kinase signalling pathway in glioblastoma patients in vivo. Cancer Res 63: 2743–46

    Google Scholar 

  16. Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 22(5):e8

    Article  CAS  Google Scholar 

  17. Crighton D, Wilkinson S, O’Prey J, et al. (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–34

    Article  CAS  PubMed  Google Scholar 

  18. Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5: 275–84

    Article  CAS  PubMed  Google Scholar 

  19. Denker SP, Barber DL (2002) Ion transport proteins anchor and regulate the cytoskeleton. Curr Opin Cell Biol 14: 214–20

    Article  CAS  PubMed  Google Scholar 

  20. de Vleeschouwer S, Rapp M, Sorg RV, et al. (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59: 988–99

    PubMed  Google Scholar 

  21. Eoli M, Menghi F, Bruzzone MG, et al. (2007) Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 13: 2606–13

    Article  CAS  PubMed  Google Scholar 

  22. Eshleman JS, Carlson BL, Mladek AC, et al. (2002) Inhibition of the mammalian target of rapamycin sensitises U87 xenografts to fractionated radiation therapy. Cancer Res 62: 7291–97

    CAS  PubMed  Google Scholar 

  23. Espinada CE, Chang JH, Twis J, et al. (2004) Repression of Na,K-ATPase β1-subunit by the transcription factor Snail in carcinoma. Mol Biol Cell 15: 1364–73

    Article  CAS  Google Scholar 

  24. Feng Z, Zhang H, Levine AJ, et al. (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102: 8204–09

    Article  CAS  PubMed  Google Scholar 

  25. Fueyo J, Alemany R, Gomez-Manzano C, et al. (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95: 652–60

    CAS  PubMed  Google Scholar 

  26. Galanis E, Buckner JC, Maurer MJ, et al. (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23: 5294–304

    Article  CAS  PubMed  Google Scholar 

  27. Galli R, Binda E, Orfanelli U, et al. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–21

    Article  CAS  PubMed  Google Scholar 

  28. Giese A, Bjerkvig R, Berens ME, et al. (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21: 1624–36

    Article  CAS  PubMed  Google Scholar 

  29. Gilberson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7: 733–36

    Article  CAS  Google Scholar 

  30. Gilbert MR, Loghin M (2005) The treatment of malignant gliomas. Curr Treat Options Neurol 7: 293–303

    Article  PubMed  Google Scholar 

  31. Gorlia T, van den Bent MJ, Hegi ME, et al. (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9: 29–38

    Article  PubMed  Google Scholar 

  32. Goudar RK, Shi Q, Hjelmeland MD, et al. (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4: 101–12

    CAS  PubMed  Google Scholar 

  33. Groves MD, Puduvalli VK, Chang SM, et al. (2007) A North American brain tumor consortium (NABTC 99-04) phase II trial of temozolomide plus thalidomide for recurrent glioblastoma multiforme. J Neurooncol 81: 271–77

    Article  CAS  PubMed  Google Scholar 

  34. Groves MD, Puduvalli VK, Conrad CA, et al. (2006) Phase II trial of temozolomide plus marimastat for recurrent anaplastic gliomas: a relationship among efficacy, joint toxicity and anticonvulsant status. J Neurooncol 80: 83–90

    Article  CAS  PubMed  Google Scholar 

  35. Groves MD, Puduvalli VK, Hess KR, et al. (2002) Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 20: 1383–88

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi Y, Edwards NA, Proescholdt MA, et al. (2007) Regulation and function of aquaporin-1 in glioma cells. Neoplasia 9: 777–87

    Article  CAS  PubMed  Google Scholar 

  37. Hegi ME, Diserens AC, Godard S, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al. (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10: 1871–74 (This prospective clinical trial identifies MGMT-methylation status as an independent predictor for glioblastoma patients treated with a methylating agent).

    Article  CAS  PubMed  Google Scholar 

  38. Heimberger AB, Archer GE, McLendon RE, et al. (2000) Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 6: 4148–53

    CAS  PubMed  Google Scholar 

  39. Hidalgo H, Eckhardt SG (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93: 178–93

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh JC, Lesniak MS (2005) Surgical management of high-grade gliomas. Expert Rev Neurother 5(6 Suppl): S33–39

    Article  Google Scholar 

  41. Hu X, Pandolfi PP, Li Y, et al. (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7: 356–68

    Article  CAS  PubMed  Google Scholar 

  42. Huang YT, Chueh SC, Teng CM, et al. (2004) Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol 67: 727–33

    Article  CAS  PubMed  Google Scholar 

  43. Husain SR, Puri RK (2003) Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol 65: 37–48

    Article  PubMed  Google Scholar 

  44. Jin S (2005) p53, Autophagy and tumor suppression. Autophagy 1: 171–73

    Article  CAS  PubMed  Google Scholar 

  45. Jiang H, Gomez-Manzano C, Aoki H, et al. (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99: 1410–14

    Article  CAS  PubMed  Google Scholar 

  46. Jouanneau E, Poujol D, Caux C, et al. (2006) Club de Neuro-Oncologie de la Société Française de Neurochirurgie. Dendritic cells and gliomas: a hope in immunotherapy? Neurochirurgie 52: 555–70

    Article  CAS  PubMed  Google Scholar 

  47. Joy AM, Beaudry CE, Tran NL, et al. (2003) Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 116: 4409–17

    Article  CAS  PubMed  Google Scholar 

  48. Kanzawa T, Bedwell J, Kondo Y, et al. (2003) Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 99: 1047–52

    Article  CAS  PubMed  Google Scholar 

  49. Kanzawa T, Germano IM, Komata T, et al. (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11: 448–57

    Article  CAS  PubMed  Google Scholar 

  50. Kanzawa T, Ito H, Kondo Y, et al. (2003) Current and future gene therapy for malignant gliomas. J Biomed Biotechn 2003: 25–34

    Article  Google Scholar 

  51. Kikuchi T, Akasaki Y, Abe T, et al. (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin. J Immunother 27: 452–59

    Article  CAS  PubMed  Google Scholar 

  52. Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidylinositol-3-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13: 507–18

    Article  CAS  PubMed  Google Scholar 

  53. Kondo Y, Kanzawa T, Sawaya R, et al. (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726–34

    Article  CAS  PubMed  Google Scholar 

  54. Koul D, Shen R, Bergh S, et al. (2006) Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther 5: 637–44

    Article  CAS  PubMed  Google Scholar 

  55. Koul D, Shen R, Shishodia S, et al. (2007) PTEN down regulates AP-1 and targets c-fos in human glioma cells via PI3-kinase/Akt pathway. Mol Cell Biochem 300: 77–87

    Article  CAS  PubMed  Google Scholar 

  56. Koul D, Takada Y, Shen R, et al. (2006) PTEN enhances TNF-induced apoptosis through modulation of nuclear factor-kappaB signaling pathway in human glioma cells. Biochem Biophys Res Commun 350: 463–71

    Article  CAS  PubMed  Google Scholar 

  57. Lacroix M, Abi-Said D, Fourney DR, et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190–98

    Article  CAS  PubMed  Google Scholar 

  58. Lamszus K, Heese O, Westphal M (2004) Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 117: 169–90

    CAS  PubMed  Google Scholar 

  59. Lassman AB, Holland EC (2007) Incorporating molecular tools into clinical trials and treatment for gliomas? Curr Opin Neurol 20: 708–11

    Article  CAS  PubMed  Google Scholar 

  60. Laws ER, Parney IF, Huang W, et al. (2003) Glioma Outcomes Investigators. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99: 467–73 *These data provide Class II evidence to support tumor gradé, patient’s age, and patient’s functional status as prognostic factors for survival in individuals with recently diagnosed malignant gliomas and resection (compared with biopsy) is also a strong prognostic factor.

    Article  PubMed  Google Scholar 

  61. Lefranc F, Brotchi J, Kiss R (2005) Present and Future Issues in the Treatment of Malignant Gliomas, with a Special Emphasis on Cell Migration and the Resistance of Migrating Glioma Cells to Apoptosis. J Clin Oncol 23: 2411–22 **A number of signaling pathways can be constitutively activated in migrating glioma cells, thus rendering these cells resistant to cytotoxic insults and particular inhibitors should therefore be chosen if the target is present in the tumor tissue.

    Article  CAS  PubMed  Google Scholar 

  62. Lefranc F, Facchini V, Kiss R (2007) Pro-autophagic drugs: a novel means to combat apoptosis-resistant cancers. The Oncologist 12: 1395–403

    Article  CAS  PubMed  Google Scholar 

  63. Lefranc F, James S, Camby I, et al. (2005) Combined cimetidine and temozolomide, compared with temozolomide alone: significant increases in survival in nude mice bearing U373 human glioblastoma multiforme orthopic xenografts. J Neurosurg 102: 706–14

    Article  CAS  PubMed  Google Scholar 

  64. Lefranc F, Kiss R (2006) Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus 20: E7

    Article  PubMed  Google Scholar 

  65. Lefranc F, Kiss R (2008) The Sodium Pump α1 Subunit as a Potential Target to Combat Apoptosis-Resistant Glioblastomas. Neoplasia 10: 198–206

    CAS  PubMed  Google Scholar 

  66. Lefranc F, Mijatovic T, Kondo Y, et al. (2008) Targeting the α1 subunit of the sodium pump (the Na+/K+-ATPase) to combat glioblastoma cells. Neurosurgery 62: 211–21

    Article  PubMed  Google Scholar 

  67. Lefranc F, Sadeghi N, Camby I, et al. (2006) Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther 6: 719–32

    Article  CAS  PubMed  Google Scholar 

  68. Lefranc F, Yeaton P, Brotchi J, et al. (2006c) Cimetidine, an unexpected anti-tumor agent, and its potential for the treatment of glioblastoma (Review). Int J Oncol 28: 1021–30

    CAS  PubMed  Google Scholar 

  69. Lemercier M, Kondo Y, Mathieu V, et al. (2008) Knocking Down Galectin-1 in Human Hs683 Glioblastoma Cells Impairs both Angiogenesis through ORP150 Depletion and Endoplasmic Reticulum Stress Responses. J Neurol Exp Neuropathol 67: 456–69

    CAS  Google Scholar 

  70. Liau LM, Prins RM, Kiertscher SM, et al. (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11: 5515–25

    Article  CAS  PubMed  Google Scholar 

  71. Lyons SA, Chung WJ, Weaver AK, et al. (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67: 9463–71

    Article  CAS  PubMed  Google Scholar 

  72. Maiuri MC, Zalckvar E, Kimchi A, et al. (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–52

    Article  CAS  PubMed  Google Scholar 

  73. McConkey DJ, Lin Y, Nutt LK, et al. (2000) Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinomas cells. Cancer Res 60: 3807–12

    CAS  PubMed  Google Scholar 

  74. McCormick F (2004) Survival pathways meet their end. Nature 428: 267–69

    Article  CAS  PubMed  Google Scholar 

  75. Megalizzi V, Mathieu V, Mijatovic T, et al. (2007) 4-IBP, a sigmal receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 9: 358–69

    Article  CAS  PubMed  Google Scholar 

  76. Mellinghoff IK, Wang MY, Vivanco I, et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–24 (In addition to the role of rapamycin as an immune suppressant, emerging data indicate that genetic and metabolic changes accompanying malignant transformation might causes hypersensitivity to TOR inhibition).

    Article  CAS  PubMed  Google Scholar 

  77. Mijatovic T, Op De Beeck A, Van Quaquebeke E, et al. (2006) The cardenolide UNBS1450 is able to deactivate nuclear factor kappaB-mediated cytoprotective effects in human nonsmall cell lung cancer cells. Mol Cancer Ther 5: 391–99

    Article  CAS  PubMed  Google Scholar 

  78. Mijatovic T, Roland I, Van Quaquebeke E, et al. (2007) The alpha-1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. J Pathol 212: 170–79

    Article  CAS  PubMed  Google Scholar 

  79. Mijatovic T, Van Quaquebeke E, Delest B, Debeir, et al. (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776: 32–57

    CAS  PubMed  Google Scholar 

  80. Morabito A, Fanelli M, Carillio G, et al. (2004) Thalidomide prolongs disease stabilization after conventional therapy in patients with recurrent glioblastoma. Oncol Rep 11: 93–95

    CAS  PubMed  Google Scholar 

  81. Munhoz CD, Kawamoto EM, de Sa Lima L, et al. (2005) Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochem Funct 23: 115–23

    Article  CAS  PubMed  Google Scholar 

  82. Nagai S, Washiyama K, Kurimoto M, Takaku, et al. (2002) Aberrant nuclear factor-kappaB and its participation in the growth of human malignant astrocytomas. J Neurosurg 96: 909–17

    Article  CAS  PubMed  Google Scholar 

  83. Narita Y, Nagane M, Mishima K, et al. (2002) Mutant epidermal growth factor receptor signalling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 62: 6764–69

    CAS  PubMed  Google Scholar 

  84. Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18: 1801–11

    Article  CAS  PubMed  Google Scholar 

  85. Newton HB (2004) Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Expert Rev Anticancer Ther 4: 105–28

    Article  CAS  PubMed  Google Scholar 

  86. Nicholas MK (2007) Glioblastoma multiforme: evidence-based approach to therapy. Expert Rev Anticancer Ther 7(12 Suppl): S23–27

    Article  Google Scholar 

  87. Nozawa H, Watanabe T, Nagawa H (2007) Phosphorylation of ribosomal p70S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 251: 105–13

    Article  CAS  PubMed  Google Scholar 

  88. O’Rourke DM (2004) Targeted molecular therapy in glial tumors. Neurosurgery 54: N9 (letter)

    Article  Google Scholar 

  89. Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603: 113–28

    CAS  PubMed  Google Scholar 

  90. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Rev Cancer 4: 592–603

    Article  CAS  Google Scholar 

  91. Omuro AM, Delattre JY (2007) Editorial: what is new in the treatment of gliomas? Curr Opin Neurol 20: 704–07

    Article  PubMed  Google Scholar 

  92. Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6: 1909–19

    Article  CAS  PubMed  Google Scholar 

  93. Pardridge WM (2004) Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 4: 1103–13

    Article  CAS  PubMed  Google Scholar 

  94. Pattingre S, Levine B (2006) Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66: 2885–88

    Article  CAS  PubMed  Google Scholar 

  95. Pelloski CE, Lin E, Zhang L, et al. (2006) Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 12: 3935–41

    Article  CAS  PubMed  Google Scholar 

  96. Pfeffer MR, Levitt ML, Aderka D (2004) Gefitinib in recurrent glioblastoma. J Clin Oncol 22: 2755–6, author reply 2756

    Article  PubMed  Google Scholar 

  97. Prados M, Chang S, Burton E, et al. (2003) Phase I study of OSI-774 alone or with temozolomide in patients with malignant glioma. Proc Am Soc Clin Oncol 22: 99

    Google Scholar 

  98. Puduvalli VK (2004) Inhibition of angiogenesis as a therapeutic strategy against brain tumors. Cancer Treat Res 117: 307–36

    CAS  PubMed  Google Scholar 

  99. Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21: 7674–83

    CAS  PubMed  Google Scholar 

  100. Rao RD, Mladek AC, Lamont JD, et al. (2005) Distruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7: 921–29

    Article  CAS  PubMed  Google Scholar 

  101. Reardon DA, Desjardins A, Rich JN, et al. (2008) The Emerging Role of Anti-Angiogenic Therapy for Malignant Glioma. Curr Treat Options Oncol 9: 1–22

    Article  PubMed  Google Scholar 

  102. Reardon DA, Egorin MJ, Quinn JA, et al. (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23: 9359–68

    Article  CAS  PubMed  Google Scholar 

  103. Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukaryot Cell 1: 11–21

    Article  CAS  PubMed  Google Scholar 

  104. Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11: 342–57

    Article  CAS  PubMed  Google Scholar 

  105. Rich JN, Reardon DA, Peery T, et al. (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22: 133–42

    Article  CAS  PubMed  Google Scholar 

  106. Roos WP, Batista LF, Naumann SC, et al. (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26: 186–97

    Article  CAS  PubMed  Google Scholar 

  107. Sampson JH, Akabani G, Archer GE, et al. (2003) Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65: 27–35

    Article  PubMed  Google Scholar 

  108. Sampson JH, Brady ML, Petry NA, et al. (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 60(2 Suppl 1): ONS89–98

    PubMed  Google Scholar 

  109. Sanai N, Alvarez-Buylla A, Berger M (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–22

    Article  CAS  PubMed  Google Scholar 

  110. Schilsky RL (2002) End points in cancer clinical trials and the drug approval process. Clin Cancer Res 8: 935–38

    PubMed  Google Scholar 

  111. Schmalzing G, Kröner S, Schachner M, et al. (1992) The adhesion molecule on glia (AMOG/β2) and α1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol Chem 267: 20212–16

    CAS  PubMed  Google Scholar 

  112. Sekulié A, Hudson CC, Homme JL, et al. (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60: 3504–13

    Google Scholar 

  113. Senner V, Schmidtpeter S, Braune S, et al. (2003) AMOG/beta2 and glioma invasion: does loss of AMOG make tumour cells run amok? Neuropathol Appl Neurobiol 29: 370–77

    Article  CAS  PubMed  Google Scholar 

  114. Shingu T, Yamada K, Hara N, et al. (2003) Synergistic augmentation of antimicrotubule agent-induced cytotoxicity by a phosphoinositide 3-kinase inhibitor in human malignant glioma cells. Cancer Res 63: 4044–47

    CAS  PubMed  Google Scholar 

  115. Shingu T, Yamada K, Hara N, et al. (2003) Growth inhibition of human malignant glioma cells induced by the PI3-K-specific inhibitor. J Neurosurg 98: 154–61

    Article  CAS  PubMed  Google Scholar 

  116. Sjöström M, Stenström K, Eneling K, et al. (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci USA 104: 16922–27

    Article  PubMed  Google Scholar 

  117. Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26: 543–49

    Article  CAS  PubMed  Google Scholar 

  118. Stark-Vance V (2005) Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Neuro-Oncology 7: 369

    Google Scholar 

  119. Stenkwist B (2001) Cardenolides and cancer. Anti-Cancer Drugs 12: 635–36

    Article  Google Scholar 

  120. Stettner MR, Wang W, Nabors LB, et al. (2005) Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res 65: 5535–43

    Article  CAS  PubMed  Google Scholar 

  121. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359: 1011–18 (A systematic review and meta-analysis using updated data on individual patients from available randomised trials that compared radiotherapy alone with radiotherapy plus chemotherapy.)

    Article  CAS  PubMed  Google Scholar 

  122. Stupp R, Mason WP, van den Bent MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–96 (Randomized trial demonstrating that the addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.)

    Article  CAS  PubMed  Google Scholar 

  123. Takano T, Lin JH, Arcuino G, et al. (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7: 1010–15

    Article  CAS  PubMed  Google Scholar 

  124. Takeuchi H, Kondo Y, Fujiwara K, et al. (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65: 3336–46

    CAS  PubMed  Google Scholar 

  125. Van Quaquebeke E, Simon G, Andre A, et al. (2005) Identification of a novel cardenolide (2″-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 48: 849–56

    Article  PubMed  CAS  Google Scholar 

  126. Viktorsson K, Lewensohn R, Zhivotovsky B (2005) Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res 94: 143–96

    Article  CAS  PubMed  Google Scholar 

  127. Vogelbaum MA, Sampson JH, Kunwar S, et al. (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61: 1031–37

    Article  PubMed  Google Scholar 

  128. Wagner SA, Desjardins A, Reardon DA, et al. (2008) Update on survival from the original phase II trial of bevacizumab and irinotecan in recurrent malignant gliomas. J Clin Oncol 26: (May 20 suppl; abstr 2021)

    Google Scholar 

  129. Weaver M, Laske DW (2003) Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 65: 3–13

    Article  PubMed  Google Scholar 

  130. Wendel HG, Malina A, Zhao Z, et al. (2006) Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 66: 7639–46

    Article  CAS  PubMed  Google Scholar 

  131. Westphal M, Hilt DC, Bortey E, et al. (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5: 79–88

    Article  CAS  PubMed  Google Scholar 

  132. Wiencke JK, Zheng S, Jelluma N, et al. (2007) Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastomas. Neuro Oncol 9: 271–79

    Article  CAS  PubMed  Google Scholar 

  133. Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3: 157–68

    Article  CAS  PubMed  Google Scholar 

  134. Yamanaka R, Abe T, Yajima N, et al. (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89: 1172–79

    Article  CAS  PubMed  Google Scholar 

  135. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59: 4383–91

    CAS  PubMed  Google Scholar 

  136. Yu JS, Liu G, Ying H, et al. (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64: 4973–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lefranc, F., Rynkowski, M., DeWitte, O., Kiss, R. (2009). Present and potential future adjuvant issues in high-grade astrocytic glioma treatment. In: Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 34. Springer, Vienna. https://doi.org/10.1007/978-3-211-78741-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-78741-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-78740-3

  • Online ISBN: 978-3-211-78741-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics