Skip to main content

Structure and function of the Golgi organelle in parasitic protists

  • Chapter
The Golgi Apparatus

Abstract

At least three aspects make study of endomembrane systems of parasitic protists scientifically important. First, unicellular parasites are promising objects to clarify Golgi functions, as well as mechanisms of intracellular transport because they possess essentially reduced secretory machinery, often coupled with hypertrophied secretion of certain proteins. A comparative molecular analysis of their compact genomes is helpful in determining the minimal set of genes for certain transport and secretory functions. In addition, small cell size of many protists facilitates morphological analysis, particularly, three-dimensional reconstruction of the secretory compartment (Beznoussenko et al. 2007; Cooke et al. 2004; Joiner and Roos 2002; Lujan and Touz 2003; Overath and Engstler 2004; Plattner 1993). Second, knowledge about specific mechanisms of function of endomembrane system of pathogenic protists could be helpful in development of pharmaceutical drugs. Third, the reconstruction of the ancestral nature of intracellular trafficking depends on the topology and rooting of the eukaryotic tree (Richards and Cavalier-Smith 2005). Thus, analysis of protists by reconstructing ancestral states could help in understanding of the origin and evolution not only of the secretory system, but also the eukaryotic cell per se.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackers JP, Dhir V, Field MC (2005) A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141: 89–97

    Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475

    Google Scholar 

  • Adisa A, Albano FR, Reeder J, Foley M, Tilley L (2001) Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J Cell Sci 114: 3377–3386

    Google Scholar 

  • Adisa A, Frankland S, Rug M, Jackson K, Maier AG, Walsh P, LithgowT, Klonis N, Gilson PR, Cowman AF, Tilley L (2007) Re-assessing the locations of components of the classical vesicle-mediated trafficking machinery in transfected Plasmodium falciparum. J Parasitol 37: 1127–1141

    Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Browser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, KarpovS, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor M (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52: 399–451

    Google Scholar 

  • Ajioka JW, Boothroyd JC, Brunk BP, Hehl A, Hillier L, Manger ID, Marra M, Overton GC, Roos DS, Wan KL, Waterston R, Sibley L D(1998) Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res 8: 18–28

    Google Scholar 

  • Alexander DL, Schwartz KL, Balber AE, Bangs JD (2002) Developmentally regulated trafficking of the lysosomal membrane protein p67 in Trypanosoma brucei. J Cell Sci 115:3243–3263

    Google Scholar 

  • Allan D, Kallen KJ (1994) Is plasma membrane lipid composition defined in the exocytic or the endocytic pathway? Trends Cell Biol 4: 350–353

    Google Scholar 

  • Allan RB, Balch WE (1999) Cell biology—Protein sorting by directed maturation of Golgi compartments. Science 285: 63–66

    Google Scholar 

  • Allan V (1995) Membrane traffic motors. FEBS Letters 369: 101–106

    Google Scholar 

  • Andersson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2: 535–541

    Google Scholar 

  • Ansorge I, Benting J, Bhakdi S, Lingelbach K (1996) Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 315: 307–314

    Google Scholar 

  • Arisue N, Hasegawa M, Hashimoto T (2005) Root of the eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol 22: 409–420

    Google Scholar 

  • Arisue N, Sachez LB, Weiss LM, Muller M, Hashimoto T (2002) Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int 51: 9–16

    Google Scholar 

  • Bahl A, Brunk B, Coppel RL, Crabtree J, Diskin SJ, Fraunholz MJ, Grant GR, Gupta D, Huestis RL, Kissinger JC, Labo P, Li L, McWeeney SK, Milgram AJ, Roos DS, Schug J, Stoeckert Jr CJ (2002) PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). Nucleic Acids Res 30: 87–90

    Google Scholar 

  • Baldi DL, Andrews KT, Waller RF, Roos DS, Howard RF, Crabb BS, Cowman AF (2000) RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J 19: 2435–2443

    Google Scholar 

  • Bangs JD, Andrews NW, Hart GW, Englund PT(1986) Posttranslational modification and intracellular-transport of a trypanosome variant surface glycoprotein. J Cell Biol 103:255–263

    Google Scholar 

  • Bangs JD, Hereld D, Krakow JL, Hart GW, Englund PT (1985) Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc Natl Acad Sci USA 82: 3207–3211

    Google Scholar 

  • Bangs JD, Uyetake L, Brickman MJ, Balber AE, Boothroyd JC (1993) Molecular cloning and cellular localization of a Bip homolog in Trypanosoma brucei — divergent ER retention signals in a lower eukaryote. J Cell Sci 105: 1101–1113

    Google Scholar 

  • Bannister LH, Hopkins JM, Dluzewski AR, Margos G, Williams IT, Blackman MJ, Kocken CH, Thomas AW, Mitchell GH (2003) Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 116: 3825–3834

    Google Scholar 

  • Bannister LH, Hopkins JM, Margos G, Dluzewski AR, Mitchell GH (2004) Three-dimensional ultrastructure of the ring stage of Plasmodium falciparum: evidence for export pathways. Microsc Microanal 10: 551–562

    Google Scholar 

  • Banting G, Benting J, Lingelbach K(1995) A minimalist view of the secretoryp pathway in Plasmodium falciparum. Trends Cell Biol 5: 340–343

    Google Scholar 

  • Becker B, Melkonian M (1996) The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 60: 697–721

    Google Scholar 

  • Beh CT, Rose MD (1995) 2 Redundant systems maintain levels of resident proteins within the yeast endoplasmic reticulum. Proc Natl Acad Sci USA 92: 9820–9823

    Google Scholar 

  • Benchimol M, Ribeiro KC, Mariante RM, Alderete JF (2001) Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus. Eur J Cell Biol 80: 593–607

    Google Scholar 

  • Bevis BJ, Glick BS, Mogelsvang S, Staehelin LA (2002) De novo formation of transitional ER and Golgi compartments in Pichia pastoris. Mol Biol Cell 13: 283A

    Google Scholar 

  • Beznoussenko GV, Dolgikh VV, Seliverstova EV, Semenov PB, Tokarev YS, Trucco A, Micaroni M, Di Giandomenico D, Auinger P, Senderskiy IV, Skarlato SO, Snigirevskaya ES, Komissarchik YY, Pavelka M, De Matteis MA, Luini A, Sokolova YY, Mironov AA (2007) Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. J Cell Sci 120: 1288–1298

    Google Scholar 

  • Beznoussenko GV, Mironov AA (2002) Models of intracellular transport and evolution of the Golgi complex. Anat Res 268: 226–238

    Google Scholar 

  • Biderre C, Metenier G, Vivares CP (1998) A small spliceosomal-type intron occurs in a ribosomal protein gene of the microsporidian Encephalitozoon cuniculi. Mol Biochem Parasitol 94: 283–286

    Google Scholar 

  • Bishop N, Woodmane P(2000) ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell 11: 227–239

    Google Scholar 

  • Boman AL, Kahn RA (1995) Arf proteins — the membrane traffic police. Trends Biochem Sci 20: 147–150

    Google Scholar 

  • Bonifacino JS, Dell’Angelica EC (1999) Molecular bases for the recognition of tyrosinebased sorting signals. J Cell Biol 145: 923–926

    Google Scholar 

  • Bradley PJ, Boothroyd JC (2001) The pro region of Toxoplasma ROP1 is a rhoptry-targeting signal. Int J Parasitol 31: 1177–1186

    Google Scholar 

  • Brecht S, CarruthersVB, Ferguson DJP, Giddings OK, Wang G, Jakle U, Harper JM, Sibley LD, Soldati D (2001) The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. J Biol Chem 276: 4119–4127

    Google Scholar 

  • Bredeston LM, Caffaro CE, Samuelson J, Hirschberg CB (2005) Golgi and endoplasmic reticulum functions take place in different subcellular compartments of Entamoeba histolytica. J Biol Chem 280: 32168–32176

    Google Scholar 

  • Bretscher MS, Munro S (1993) Cholesterol and the Golgi-apparatus. Science 261: 1280–1281

    Google Scholar 

  • Cavalier-Smith T (1983) A 6-kindom classification and aunited phylogeny. In: Schwemmler W, Schenk H (eds) Endocytobiology II. de Gruyter, Berlin, pp. 265–279

    Google Scholar 

  • Cavalier-Smith T (1991) Cell evolution. In: Osawa S, Honjo T (eds) Evolution of life. Springer-Verlag, Tokyo, pp. 271–304

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994

    Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347–366

    Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Sys Evol Microbiol 52: 297–354

    Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc Royal Soc Biol Sci 271:1251–1262

    Google Scholar 

  • Cavalier-Smith T, Chao EE (1996) Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43: 551–562

    Google Scholar 

  • Chavez-Munguia B, Espinosa-Cantellano M, Castanon G, Martinez-Palomo A (2000) Ultrastructural evidence of smooth endoplasmic reticulum and Golgi-like elements in Entamoeba histolytica and Entamoeba dispar. Arch Med Res 31:S165–S167

    Google Scholar 

  • Clayton C, Hausler T, Blattner J (1995) Protein trafficking in kinetoplastid Protozoa. Microbiol Rev 59: 325–344

    Google Scholar 

  • Cole NB, Lippincottschwartz J (1995) Organization of organelles and membrane traffic by microtubules. Cur Opin Cell Biol 7: 55–64

    Google Scholar 

  • Conibear E, Stevens TH (1995) Vacuolar biogenesis in yeast — sorting out the sorting Proteins. Cell 83: 513–516

    Google Scholar 

  • Cooke BM, Lingelbach K, Bannister LH, Tilley L (2004) Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol 20: 581–589

    Google Scholar 

  • Dacks JB, Davis LAM, Sjogren AM, Andersson JO, Roger AJ, Doolittle WF (2003) Evidence for Golgi bodies in proposed ‘Golgi-lacking’ lineages. Proc Royal Soc Biol Sci 270: S168–S171

    Google Scholar 

  • Dacks JB, Doolittle WF (2001) Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107: 419–425

    Google Scholar 

  • Dacks JB, Doolittle WF (2002) Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J Cell Sci 115: 1635–1642

    Google Scholar 

  • De Duve C (1990) The primitive phagocyte. In: Nardon P, Gianiazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV. Institut National de la Recherche Agronomique, Paris, pp. 511–514

    Google Scholar 

  • Descoteaux A, Luo Y, Turco SJ, Beverley SM (1995) A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 269: 1869–1872

    Google Scholar 

  • Dhir V, Goulding D, Field MC (2004) TbRAB1 and TbRAB2 mediate trafficking through the early secretory pathway of Trypanosoma brucei. Mol Biochem Parasitol 137: 253–265

    Google Scholar 

  • Dubremetz JF, Achbarou A, Bermudes D, Joiner KA (1993) Kinetics and pattern of organelle exocytosis during Toxoplasma gondii host-cell interaction. Parasitol Res 79: 402–408

    Google Scholar 

  • Duden R, Griffiths G, Frank R, Argos P, Kreis TE (1991) Beta-Cop, a 110kDa protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64: 649–665

    Google Scholar 

  • Duszenko M, Ivanov IE, Ferguson MAJ, Plesken H, Cross GAM (1988) Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei. J Cell Biol 106:77–86

    Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery M (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33: 3–28

    Google Scholar 

  • Engstler M, Boshart M (2004) Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage defferenciation in Trypanosoma brucei. Genes Dev 18:2798–2811

    Google Scholar 

  • Engstler M, Weise F, Bopp K, Grunfelder CG, G€unzel M, Heddergott N, Overath P (2005) The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei. J Cell Sci 118: 2105–2118

    Google Scholar 

  • Fast NM, Doolittle WF (1999) Trichomonas vaginalis possesses a gene encoding the essential spliceosomal component, PRP8. Mol Biochem Parasitol 99: 275–278

    Google Scholar 

  • Fast NM, Roger AJ, Richardson CA, Doolittle WF (1998) U2 and U6 snRNA genes in the microsporidian Nosema locustae: evidence for a functional spliceosome. Nucleic Acids Res 26: 3202–3207

    Google Scholar 

  • Fedorov A, Hartman H (2004) What does the microsporidian E.cuniculi tell us about the origin of the eukaryotic cell? J Mol Evol 59: 695–702

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zool 27: 401–410

    Google Scholar 

  • Ferguson MAJ, Duszenko M, Lamont GS, Overath P, Cross GAM (1986) Biosynthesis of Trypanosoma brucei variant surface glycoproteins N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem 261: 356–362

    Google Scholar 

  • Ferguson MAJ, Haldar K, Cross GAM (1985) Trypanosoma brucei variant surface glycoprotein has a Sn-1,2-dimyristyl glycerol membrane anchor at Its COOH terminus. J Biol Chem 260: 4963–4968

    Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407–409

    Google Scholar 

  • Field H, Sherwin T, Smith AC, Gull K, Field MC (2000) Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked RAB protein from Trypanosoma brucei. Mol Biochem Parasitol 106: 21–35

    Google Scholar 

  • Fischer WM, Palmer JD (2005) Evidence from small-subunit ribosomal RNA sequences for a fungal origin of Microsporidia. Mol Phylogenet Evol 36: 606–622

    Google Scholar 

  • Foussard F, Leriche MA, Dubremetz JF (1991) Characterization of the lipid content of Toxoplasma gondii rhoptries. Parasitology 102: 367–370

    Google Scholar 

  • García-Salcedo JA, Pérez-Morga D, Gijón P, Dilbeck V, Pays E, Nolan DP (2004) A differential role for actin during the life cycle of Trypanosoma brucei EMBO J l 23: 780–789

    Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden G I, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Google Scholar 

  • Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5: 589–595

    Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93: 14614–14617

    Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87: 159–168

    Google Scholar 

  • Ghosh S, Field J, Rogers R, Hickman M, Samuelson J (2000) The Entamoeba histolytica mitochondrion-derived organelle (crypton) contains double-stranded DNA and appears to be bound by a double membrane. Infect Immun 68: 4319–4322

    Google Scholar 

  • Ghosh SK, Field J, Frisardi M, Rosenthal B, Mai ZM, Rogers R, Samuelson J (1999) Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: Localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus. Infection and Immunity 67: 3073–3081

    Google Scholar 

  • Grunfelder CG, Engstler M, Weise F, Schwarz H, Stierhof YD, Boshart M, Overath P (2002) Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3: 547–559

    Google Scholar 

  • Guo Q, Vasile E, Krieger M (1994) Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J Cell Biol 125: 1213–1224

    Google Scholar 

  • Hager KM, Striepen B, Tilney LG, Roos DS (1999) The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J Cell Sci 112: 2631–2638

    Google Scholar 

  • Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99: 1420–1425

    Google Scholar 

  • Hartmann J, Hu K, He CY, Pelletier L, Roos DS, Warren G (2006) Golgi and centrosome cycles in Toxoplasma gondii. Mol Biochem Parasitol 145: 125–127

    Google Scholar 

  • Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Okamoto K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol Biol Evol 11: 65–71

    Google Scholar 

  • Hashimoto T, Sanchez LB, Shirakura T, Muller M, Hasegawa M (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci USA 95: 6860–6865

    Google Scholar 

  • Hayashi M, Taniguchi S, Ishizuka Y, Kim HS, Wataya Y, Yamamoto A, Moriyama Y (2001) A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldinA-sensitive pathway. J Biol Chem 276: 15249–15255

    Google Scholar 

  • He CY (2007) Golgi biogenesis in simple eukaryotes. Cell Microbiol 9: 566–572

    Google Scholar 

  • He CY, Ho HH, Malsam H, Chalouni C, West CM, Ullu E, Toomre D, Warren G (2004) Golgi duplication in Trypanosoma brucei. J Cell Biol 165: 313–321

    Google Scholar 

  • He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS (2001) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20: 330–339

    Google Scholar 

  • Hehl AB, Marti M, Kohler P (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Mol Biol Cell 11: 1789–1800

    Google Scholar 

  • Hell AB, Marti M (2004) Mol Microbiol 53: 19–28

    Google Scholar 

  • Hoppe HC, Joiner KA (2000) Cytoplasmic tail motifs mediate endoplasmic reticulum localization and export of transmembrane reporters in the protozoan parasite Toxoplasma gondii. Cell Microbiol 2: 569–578

    Google Scholar 

  • Horazdovsky BF, Dewald DB, Emr SD(1995) Protein transport to the yeast vacuole. Curr Opin Cell Biol 7: 544–551

    Google Scholar 

  • Hu K, Mann T, Striepen B, Beckers CJM, Roos DS, Murray JM (2001) Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 12: 143A

    Google Scholar 

  • Itin C, Kappeler F, Linstedt AD, Hauri HP (1995) A novel endocytosis signa l related to the KKXX ER-retrieval signal. EMBO J 14: 2250–2256

    Google Scholar 

  • Jeffries TR, Morgan GW, Field MC (2002) TbRAB18, a developmentally regulated Golgi GTPase from Trypanosoma bucei. Mol Biochem Parasitol 121: 63074

    Google Scholar 

  • Joiner KA, Fuhrman SA Miettinen HM, Kasper LH, Mellman I (1990) Toxoplasma gondii fusion competence of parasitophorous vacuoles in Fc-receptor transfected fibroblasts. Science 249: 641–646

    Google Scholar 

  • Joiner KA, Roos DS (2002) Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J Cell Biol 157: 557–563

    Google Scholar 

  • Kabnick KS, Peattie DA (1991) Giardia — a missing link between Prokaryotes and Eukaryotes. Am Sci 79: 34–43

    Google Scholar 

  • Kahn RA, Kern FG, Clark J, Gelmann EP, Rulka C (1991) Human ADP ribosylation factors — a functionally conserved family of Gtp-binding proteins. J Biol Chem 266: 2606–2614

    Google Scholar 

  • Kallen KJ, Allan D (1995) Sphingomyelin synthesis in endosomal compartments. Trends Cell Biol 5: 149

    Google Scholar 

  • Karsten V, Qi HL, Beckers CJM, Reddy A, Dubremetz JF, Webster P, Joiner KA (1998) The protozoan parasite Toxoplasma gondii targets proteins to dense granules and the vacuolar space using both conserved and unusual mechanisms. J Cell Biol 141: 1323–1333

    Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450–453

    Google Scholar 

  • Keeling PJ (2001) Parasites go the full monty. Nature 414: 401–402

    Google Scholar 

  • Keeling PJ (2003) Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38: 298–309

    Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: Biology and evolution of highly reduced intracellular parasites. Ann Rev Microbiol 56: 93–116

    Google Scholar 

  • Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17: 23–31

    Google Scholar 

  • Keeling PJ, Slamovits CH (2004) Simplicity and complexity of microsporidian genomes. Eukaryot Cell 3: 1363–1369

    Google Scholar 

  • Keohane EM, Weiss LM (1999) The structure, function, and composition of the microsporidian polar tube. In: Wittner M, Weiss LM (eds) The Microsporidia and Microsporidiosis. ASM press, Washington, D.C., pp. 196–224

    Google Scholar 

  • Klemba M, Beatty W, Gluzman I, Goldberg DE (2004) Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J Cell Biol 164: 47–56

    Google Scholar 

  • Kohler S, DelwicheCF, Denny PW,Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275: 1485–1489

    Google Scholar 

  • Ktistakis NT, Brown HA, Sternweis PC, Roth MG (1995) Phospholipase-D Is present on Golgi-enriched membranes and its activation by ADP-ribosylation factor is sensitive to Brefeldin-A. Proc Natl Acad Sci USA 92: 4952–4956

    Google Scholar 

  • Kumar N, Syin CA, Carter R, Quakyi R, Miller LH (1988) Plasmodium falciparum gene encoding a protein similar to the 78-kDa rat glucose-regulated stress protein. Proc Natl Acad Sci USA 85: 6277–6281

    Google Scholar 

  • La Greca N, Hibbs AR, CR, Foley M, Tilley L (1997) Identification of an endoplasmic reticulum resident protein with multiple EF-hand motifs in asexual stage of Plasmodium falciparum. Mol Biochem Parasitol 89: 283–293

    Google Scholar 

  • Lanfredi-Rangel A, Attias M, Reiner DS, Gillin FD, De Souza W (2003) Fine structure of the biogenesis of Giardia lamblia encystation secretory vesicles. J Struct Biol 143: 153–163

    Google Scholar 

  • Lauer SA, Rathod PK, Ghori N, Haldar K (1997) A membrane network for nutrient import in red cells infected with the malaria parasite. Science 276: 1122–1125

    Google Scholar 

  • Levine ND, Corliss JO, Cox FEG, Deroux G, Grain J, Honigberg BM, Leedale GF, Loeblich AR, Lom J, Lynn D, Merinfeld EG, Page FC, Poljansky G, Sprague V, Vavra J, Wallace FG (1980) A newly revised classification of the Protozoa. J Protozool 27: 37–58

    Google Scholar 

  • Liendo A, Stedman TT, Ngo HM, Chaturvedi S, Hoppe HC, Joiner KA(2001) Toxoplasma gondii ADP-ribosylation factor 1 mediates enhanced release of constitutively secreted dense granule proteins. J Biol Chem 276: 18272–18281

    Google Scholar 

  • Lu L, Horstmann H, Ng C, Hong W (2001) Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J Cell Sci 114: 4543–4555

    Google Scholar 

  • Lujan HD, Marotta A, Mowatt MR, Sciaky N, Lippincottschwartz J, Nash TE (1995a) Developmenta l induction of Golgi structure and function in the prim itive eukaryote Giardia lamblia. J Biol Chem 270: 4612–4618

    Google Scholar 

  • Lujan HD, Mowatt MR, Chen GZ, Nash TE (1995b) Isoprenylation of proteins in the protozoan Giardia lamblia. Mol Biochem Parasitol 72: 121–127

    Google Scholar 

  • Lujan HD, Mowatt MR, Wu JJ, Lu Y, Lees A Chance MR, Nash TE (1995c) Purification of a variant-specific surface protein of Giardia lamblia and characterization of its metal-binding Properties. J Biol Chem 270: 13807–13813

    Google Scholar 

  • Lujan HD, Touz MC (2003) Protein trafficking in Giardia lamblia. Cell Microbiol 5: 427–434

    Google Scholar 

  • Mallabiabarrena A, Jimenez MA, Rico M, Alarcon B (1995) A tyrosine-containing motif mediates ER retention of Cd3-epsilon and adopts a helix-turn structure. EMBO J14: 2257–2268

    Google Scholar 

  • Manning-Cela R, Marquez C, Franco E, Talamas-Rohana P, Meza I (2003) BFA-sensitive and insensitive exocytic pathways in Entamoeba histolytica trophozoites: their relationship to pathogenesis. Cell Microbiol 5: 921–932

    Google Scholar 

  • Marti M, Lit YJ, Schraner EM, Wild P, Kohler P, Hehl AB (2003a) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14: 1433–1447

    Google Scholar 

  • Marti M, Regos A, Li YJ, Schraner EM, Wild P, Muller N, Knopf LG, Hehl AB (2003b) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. J Biol Chem 278: 24837–24848

    Google Scholar 

  • McConville MJ, Ilgoutz SC, Teasdale RD, Foth BJ, Matthews A, Mullin KA, Gleeson PA (2002a) Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals. Eur J Cell Biol 81: 485–495

    Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD (2002b) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66: 122–154

    Google Scholar 

  • Meissner M, Reiss M, Viebig N, Carruthers VB, Toursel C, Tomavo S, Ajioka JW, Soldati D (2002b) A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115: 563–574

    Google Scholar 

  • MironovAA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) Intra-Golgi transport: a way to a new paradigm? Biochem Bioph Acta 1744: 340–350

    Google Scholar 

  • Mironov AA, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJC, Koster AJ, Burger KNJ, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5: 583–594

    Google Scholar 

  • Mollenhauer HH, Morre DJ, Rowe LD (1990) Alteration of intracellular traffic by monensin — mechanism, specificity and relationship to toxicity. Biochem Biophys Acta 1031:225–246

    Google Scholar 

  • Mordue DG, Hakansson S, Niesman I, Sibley LD (1999) Toxoplasma gondii resides in a vacuole that avoids fusion with host cel l endocytic and exocytic vesicular trafficking pathways. Exp Parasitol 92: 87–99

    Google Scholar 

  • Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites Microbiol Mol Biol Rev 66: 21–38

    Google Scholar 

  • Ohashi M, Devries KJ, Frank R, Snoek G, BankaitisV, Wirtz K, Huttner WB (1995) A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature 377: 544–547

    Google Scholar 

  • Olliaro P, Castelli F (1997) Plasmodium falciparum: an electronmicroscopy study of caveolae and trafficking between the parasite and the extracellular medium. Int J Parasitol 27: 1007–1012

    Google Scholar 

  • Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53: 735–744

    Google Scholar 

  • Parodi AJ (1993) N-Glycosylation in trypanosomatid Protozoa. Glycobiology 3:193–199

    Google Scholar 

  • Patterson DJ (1994) Protozoa: evolution and systematics. In: Haussman K, Hulsman N (eds) Progress in Protozoology, Proceedings of the 9th International Congress on Protozoology. Fischer Verlag, Stuttgart, pp. 1–14

    Google Scholar 

  • Pelham HRB (1995) Sorting and retrieval between the endoplasmic reticulum and Golgi apparatus. Curr Opin Cell Biol 7: 530–535

    Google Scholar 

  • Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418: 548–552

    Google Scholar 

  • Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Muller M, Le Guyader H (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc R Soc Biol Sci 267: 1213–1221

    Google Scholar 

  • Plattner H (1993) Membrane traffic in Protozoa. JAI Press, Greenwich

    Google Scholar 

  • Plattner H, Lumpert CJ, Knoll G, Kissmehl R, Hohne B, Momayezi M, Glasalbrecht R (1991) Stimulus secretion coupling in Paramecium cells. Eur J Cell Biol 55: 3–16

    Google Scholar 

  • Pleshinger J, Weidner E (1985) TThe microsporidian spore invasion tube. 4. Discharge activation begins with PH-triggered Ca2+ influx. J Cell Biol 100: 1834–1838

    Google Scholar 

  • Preisig HR, Anderson OR, Corliss JO, Moestrup O, Powell MJ, Roberson RW, Wetherbee R (1994) Terminology and nomenclature of protist cell-surface structures. Protoplasma 181:1–28

    Google Scholar 

  • Price HP, Panethymitaki C, Goulding D, Smith DF (2005) Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci 118:831–841

    Google Scholar 

  • Rambourg A, Clermont Y, Hermo L, Segretain D (1987) Tridimensional structure of the Golgi apparatus of nonciliated epithelial cells of the ductuli efferentes in rat-an electron microscope stereoscopic Study. Biol Cell 60: 103–116

    Google Scholar 

  • Ribeiro KC, Monteiro-Leal LH, Benchimol M (2000) Contributions of the axostyle and flagella to closed mitosis in the protists Tritrichomonas foetus and Trichomonas vaginalis. J Eukaryot Microbiol 47: 481–492

    Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436: 1113–1118

    Google Scholar 

  • Roger AJ (1999) Reconstracting early events in eukaryotic evolution. Am Nat 154: S146–S163

    Google Scholar 

  • Roger AJ, Morrison HG, Sogin ML (1999) Primary structure and phylogenetic relationships of a malate dehydrogenase gene from Giardia lamblia. J Mol Evol 48: 750–755

    Google Scholar 

  • Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci USA 95: 229–234

    Google Scholar 

  • Roos DS, Crawford MJ, Donald RGK, Kissinger JC, Klimczak LJ, Striepen B (1999) Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2: 426–432

    Google Scholar 

  • Roos DS, Donald RGK, Morrissette NS, Moulton ALC(1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: 27–63

    Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145: 69–81

    Google Scholar 

  • Rothblatt J, Novick P, Stevens TH (1994) Guidebook to the secretory pathway. Oxford University Press, Oxford

    Google Scholar 

  • Rubotham J, Woods K, Garcia-Salcedo JA, Pays E, Nolan DP (2005) Characterization of two protein disulfide isomerases from the endocytic pathway of bloodstream forms of Trypanosoma brucei. J Biol Chem 280: 10410–10418

    Google Scholar 

  • Ryan KA, Garraway LA, Descoteaux A, Turco SJ, Beverley SM (1993) Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional com-plementation of Leishmania. Proc Natl Acad Sci USA 90: 8609–8613

    Google Scholar 

  • Salama NR, Schekman RW (1995) The role of coat proteins in the biosynthesis of secretory proteins. Curr Opin Cell Biol 7: 536–543

    Google Scholar 

  • Schekman R (1994) Translocation gets a push. Cell 78: 911–913

    Google Scholar 

  • Seemann J, Pypaert M, Taguchi T, Malsam J, Warren G (2002) Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 295:848–851

    Google Scholar 

  • Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles-a novel role for a GTP-binding protein. Cell 67: 239–253

    Google Scholar 

  • Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L, Rothman JE, Wieland FT (1991) A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349: 214–220

    Google Scholar 

  • Shaw MK, Roos DS, Tilney LG (1998) Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology 117: 435–443

    Google Scholar 

  • Sibley LD, Weidner E, Krahenbuhl JL (1985) Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315: 416–419

    Google Scholar 

  • Simon S (1993) Translocation of proteins across the endoplasmic reticulum. Curr Opin Cell Biol 5: 581–588

    Google Scholar 

  • Slamovits CH, Fast NM, Law JS, Keeling PJ (2004) Genome compaction and stability in microsporidian intracellular parasites. Curr Biol 14: 891–896

    Google Scholar 

  • Smith SS, Pfluger SL, Hjort E, McArthur AG, Hager KM (2007) Molecular evolution of vesicle coat compartment betaCOP in Toxoplasma gondii. Mol Phylogenet Evol 44: 1284–1294

    Google Scholar 

  • Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163: 257–269

    Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Gen Dev 1: 457–463

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the Kingdom concept-an unusual ribosomal-RNA from Giardia lamblia. Science 243: 75–77

    Google Scholar 

  • Sogin ML, Silberman JD (1998) Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasitol 28: 11–20

    Google Scholar 

  • Sokolova Y, Snigirevskaya E, Morzhina E, Skarlato S, Mironov A, Komissarchik Y (2001) Visualization of early Golgi compartments at proliferate and sporogenic stages of a microsporidian Nosema grylli. J Eukaryot Microbiol: 86S–87S

    Google Scholar 

  • Soldati D, Lassen A, Dubremetz JF, Boothroyd JC (1998) Processing of Toxoplasma ROP1 protein in nascent rhoptries. Mol Biochem Parasitol 96: 37–48

    Google Scholar 

  • Sollner T, Whitehart SW, Brunner M, Erdjumentbromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324

    Google Scholar 

  • Stamnes MA, Rothman JE (1993) The binding of Ap-1 clathrin adapter particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73: 999–1005

    Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003) Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol 57: 408–419

    Google Scholar 

  • Stedman TT, Sussmann AR, Joiner KA (2003) Toxoplasma gondii Rab6 mediates a retrograde pathway for sorting of constitutively secreted proteins to the Golgi complex. J Biol Chem 278: 5433–5443

    Google Scholar 

  • Stefanic S, Palm D, Svard SG, Hehl AB (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281: 7595–7604

    Google Scholar 

  • Stokkermans TJW, Schwartzman JD, Keenan K, Morrissette NS, Tilney LG, Roos DS (1996) Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 84: 355–370

    Google Scholar 

  • Striepen B, Soldati D, Garcia-Reguet N, Dubremetz JF, Roos DS (2001) Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii. Mol Biochem Parasitol 113: 45–53

    Google Scholar 

  • Striepen B, White MW, Li C, Guerini MN, Malik SB, Logsdon JM, Liu C, Abrahamsen MS (2002) Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci USA 99: 6304–6309

    Google Scholar 

  • Struck NS, Sad SD, Langer C, Marti M, Pearce AF, Cowman AF, Gilberger TW (2005) Redefining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. J Cell Sci 118: 5603–5613

    Google Scholar 

  • Tabe L, Krieg P, Strachan R, Jackson D, Wallis E, Colman A (1984) Segregation of mutant ovalbumins and ovalbumin-globin fusion proteins in Xenopusoocytes-identification of an ovalbumin signal sequence. J Mol Biol 180: 645–666

    Google Scholar 

  • Takvorian PM, Cali A (1994) Enzyme histochemical identification of the Golgi apparatus in the microsporidian, Glugea stephani. J Eukaryot Microbiol. 41: 63S–64S

    Google Scholar 

  • Taraschi TF, O’Donnell M, Martinez S, Schneider T, Trelka D, Fowler VM, Tilley L, Moriyama Y (2003) Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 102: 3420–3426

    Google Scholar 

  • Taraschi TF, Trelka D, Martinez S, Schneider T, O’Donnell ME (2001) Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int J Parasitol 31: 1381–1391

    Google Scholar 

  • Thomarat F, Vivares P, Gouy M (2004) Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high fequency of fast-eolving genes. J Mol Evol 59: 780–791

    Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, Van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426: 172–176

    Google Scholar 

  • Traub LM, Ostrom JA, Kornfeld S (1993) Biochemical dissection of Ap-1 recruitment onto Golgi membranes. J Cell Biol 123: 561–573

    Google Scholar 

  • Van Dooren GG, Marti M, Tonkin SJ, Stimmler LM, Cowman AF, McFadden GI (2005) Development of the endoplasmatic reticulum, mitochondrion and apicoplast during the asexual life stage of Plasmodium falciparum. Mol Microbiol 57: 405–419

    Google Scholar 

  • Van Meer G (1989) Lipid traffic in animal cells. Ann Rev Cell Biol 5: 247–275

    Google Scholar 

  • Van Wye J, Ghori N, Webster P, Mitschler RR, Elmendorf HG, Haldar K (1996) Identification and localization of Rab6, separation of Rab6 from Erd2 and implications for an unstacked Golgi in Plasmodium falciparum. Mol Biochem Parasitol 83: 107–120

    Google Scholar 

  • Vavra J, Larsson RJI (1999) Structure of the Microsporidia. In: Wittner M, Weiss LM (eds) The Microsporidia and Microsporidiosis. ASM press, Washington, D.C., pp. 7–84

    Google Scholar 

  • Von Mollard GF, Nothwehr SF, Stevens TH (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137: 1511–1524

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal-RNA sequence suggests Microsporidia are extremely ancient eukar-yotes. Nature 326: 411–414

    Google Scholar 

  • Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s RNA. Nature 320: 287–288

    Google Scholar 

  • Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95: 12352–12357

    Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19: 1794–1802

    Google Scholar 

  • Weidner E (1982) The microsporidian spore invasion tube. 3. Tube extrusion and assembly. J Cell Biol 93: 976–979

    Google Scholar 

  • Weidner E, Byrd W (1982) The microsporidian spore invasion tube. 2. Role of calcium in the activation of invasion tube discharge. J Cell Biol 93: 970–975

    Google Scholar 

  • Weise F, Stierhof YD, Kuhn C, Wiese M, Overath P (2000) Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 113: 4587–4603

    Google Scholar 

  • Wetherbee R, Andersen RA, Pickett-Heaps J (1994) The protistan cell surface. Springer-Verlag, Vienna

    Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865–869

    Google Scholar 

  • Williams BAP, Slamovits CH, Patron NJ, Fast NM, Keeling PJ (2005) A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proc Natl Acad Sci USA 102: 10936–10941

    Google Scholar 

  • Woese CR, Fox GE (1977) Concept of cellular evolution. J Mol Evol 10: 1–6

    Google Scholar 

  • Yung S, Unnasch TR, Lang-Unnasch N (2001)Ana lysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis. Mol Biochem Parasitol 118: 11–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sokolova, Y.Y., Mironov, A.A. (2008). Structure and function of the Golgi organelle in parasitic protists. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_38

Download citation

Publish with us

Policies and ethics