Skip to main content

Enhanced sensory re-learning after nerve repair using 3D audio-visual signals and kinaesthesia — preliminary results

  • Conference paper
How to Improve the Results of Peripheral Nerve Surgery

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 100))

Abstract

Sensory re-learning methods and basics on cortical reorganization after peripheral nerve lesion are well documented. The aim of enhanced sensory re-learning using 3D audio-visual signals and kinaesthetic training is the augmentation of cognitive memory (visual and acoustic sensory memory) and cognitive function for the improvement of cerebral plasticity processes and starts as soon as possible after nerve repair. Preliminary results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Campbell JN, Khan AA, Meyer RA, Raja SN (1988) Responses to heat of C-fiber nociceptors in monkey are altered by injury in the receptive field but not by adjacent injury. Pain 32(3): 327–332

    Article  PubMed  CAS  Google Scholar 

  2. Campero M, Serra J, Marchettini P, Ochoa JL (1998) Ectopic impulse generation and autoexcitation in single myelinated afferent fibers in patients with peripheral neuropathy and positive sensory symptoms. Muscle Nerve 21(12): 1661–1667

    Article  PubMed  CAS  Google Scholar 

  3. Churchill JD, Arnold LL, Garraghty PE (2001) Somatotopic reorganization in the brainstem and thalamus following peripheral nerve injury in adult primates. Brain Res 910(1–2): 142–152

    Article  PubMed  CAS  Google Scholar 

  4. Churchill JD, Muja N, Myers WA, Besheer J, Garraghty PE (1997) Somatotopic consolidation: a third phase of reorganization after peripheral nerve injury in adult squirrel monkeys. Exp Brain Res 118: 189–196

    Article  Google Scholar 

  5. Diesch E, Preissl H, Haerle M, Schaller HE, Birbaumer N (2001) Multiple frequency steady-state evoked magnetic field mapping of digit representation in primary somatosensory cortex. Somatosens Mot Res 18(1): 10–18

    Article  PubMed  CAS  Google Scholar 

  6. Garraghty PE, Kaas JH (1991) Functional reorganization in adult monkey thalamus after peripheral nerve injury. Neuroreport 2(12): 747–750

    Article  PubMed  CAS  Google Scholar 

  7. Garraghty PE, Kaas JH (1991) Large-scale functional reorganization in adult monkey cortex after peripheral nerve injury. Proc Natl Acad Sci USA 88(16): 6976–6980

    Article  PubMed  CAS  Google Scholar 

  8. Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ (1983) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10(3): 639–665

    Article  PubMed  CAS  Google Scholar 

  9. Mogilner A, Grossman JA, Ribary U, Joliot M, Volkmann J, Rapaport D, Beasley RW, Llinas RR (1993) Somatosensory cortical plasticity in adult humans revealed by magneto-encephalography. Proc Natl Acad Sci USA 90(8): 3593–3597

    Article  PubMed  CAS  Google Scholar 

  10. Moore CE, Schady W (2000) Investigation of the functional correlates of reorganization within the human somatosensory cortex. Brain 123 (Pt 9): 1883–1895

    Article  PubMed  Google Scholar 

  11. Nordin M, Nystrom B, Wallin U, Hagbarth KE (1984) Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20(3): 231–245

    Article  PubMed  CAS  Google Scholar 

  12. Schady W, Braune S, Watson S, Torebjork HE, Schmidt R (1994) Responsiveness of the somatosensory system after nerve injury and amputation in the human hand. Ann Neurol 36(1): 68–75

    Article  PubMed  CAS  Google Scholar 

  13. Schroeder CE, Seto S, Garraghty PE (1997) Emergence of radial nerve dominance in median nerve cortex after median nerve transection in an adult squirrel monkey. J Neurophysiol 77(1): 522–526

    PubMed  CAS  Google Scholar 

  14. Tinazzi M, Zanette G, Volpato D, Testoni R, Bonato C, Manganotti P, Miniussi C, Fiaschi A (1998) Neurophysiological evidence of neuroplasticity at multiple levels of the somatosensory system in patients with carpal tunnel syndrome. Brain 121 (Pt 9): 1785–1794

    Article  PubMed  Google Scholar 

  15. Xu J, Wall JT (1999) Evidence for brainstem and supra-brainstem contributions to rapid cortical plasticity in adult monkeys. J Neurosci 19(17): 7578–7590

    PubMed  CAS  Google Scholar 

  16. Xu J, Wall JT (1997) Rapid changes in brainstem maps of adult primates after peripheral injury. Brain Res 774(1–2): 211–215

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Schmidhammer, R. et al. (2007). Enhanced sensory re-learning after nerve repair using 3D audio-visual signals and kinaesthesia — preliminary results. In: Millesi, H., Schmidhammer, R. (eds) How to Improve the Results of Peripheral Nerve Surgery. Acta Neurochirurgica Supplementum, vol 100. Springer, Vienna. https://doi.org/10.1007/978-3-211-72958-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72958-8_27

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72955-7

  • Online ISBN: 978-3-211-72958-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics