Skip to main content

Introduction and Fundamentals of Modeling Approaches for Polydisperse Multiphase Flows

  • Chapter
Multiphase Reacting Flows: Modelling and Simulation

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 492))

Abstract

An overview of the basic formulation and conceptual ideas needed for modeling polydisperse multiphase systems is provided. Special emphasis is given to systems exhibiting polydispersity in more than one internal coordinate. Such systems are described by a multivariate population balance equation, governing a number density function, which can be solved using sectional or moment methods. When the particle velocity is treated as a fluctuating quantity, the corresponding number density function is the one-point velocity density function used in kinetic theory. For this special case, a generalized population balance equation is employed to describe polydispersity in the velocity and other internal coordinates (such as the particle size.) Here, due to their flexibility in treating inhomogeneous flows, we focus on quadrature-based moment methods and show how moment transport equations can be derived from the generalized population balance equation for polydisperse multiphase flows. An example application to the one-dimensional spray equation is used to illustrate the modeling concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • K. Agrawal, P. N. Loezos, M. Syamlal, and S. Sundaresan (2001). The role of mesoscale structures in rapid gas-solid flows. Journal of Fluid Mechanics, 445: 151–185.

    MATH  Google Scholar 

  • R. Aris (1962). Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice-Hall, Englewood Cliffs, USA.

    MATH  Google Scholar 

  • G. A. Bird (1994). Molecular gas dynamics and the direct simulation of gas flows. Oxford Science Publications 42.

    Google Scholar 

  • R. B. Bird, W. E. Stewart, and E. N. Lightfoot (2002). Transport Phenomena. John Wiley_& Sons, New York, USA, second edition.

    Google Scholar 

  • F. Bouchut (1994). On zero pressure gas dynamics. In Advances in Kinetic Theory and Computing, pages 171–190. World Scientific Publishing, River Edge, USA.

    Google Scholar 

  • S. Chapman and T. G. Cowling (1961). The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • O. Desjardins, R. O. Fox, and P. Villedieu (2006). A quadrature-based moment closure for the Williams spray equation. In Proceedings of the 2006 Summer Program, pages 223–234. Center for Turbulence Research (ctr. stanford. edu), Stanford, USA.

    Google Scholar 

  • O. Desjardins, R. O. Fox, and P. Villedieu (2007). A quadrature-based moment method for dilute fluid-particle flows. Journal of Computational Physics, (submitted).

    Google Scholar 

  • J. K. Dukowicz (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2):229–253.

    Article  MATH  MathSciNet  Google Scholar 

  • R. O. Fox (2003). Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • R. O. Fox (2006a). Bivariate direct quadrature method of moments for coagulation and sintering of particle populations. Journal of Aerosol Science, 37:1562–1580.

    Article  Google Scholar 

  • R. O. Fox (2006b). CFD models for analysis and design of chemical reactors. In Advances in Chemical Engineering, volume 31, pages 231–305, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • R. O. Fox (2007). Optimal moment sets for multivariate direct quadrature method of moments. Journal of Aerosol Science, (submitted).

    Google Scholar 

  • R. O. Fox, F. Laurent, and M. Massot (2006). Numerical simulation of polydisperse, dense liquid sprays in an Eulerian framework: direct quadrature method of moments and multi-fluid method. Journal of Computational Physics, (submitted).

    Google Scholar 

  • J. Hylkema (1999). Modélisation cinétique et simulation numérique d’un brouillard dense de gouttelettes. Application aux propulseurs_à poudre. PhD thesis, ENSAE.

    Google Scholar 

  • J. Hylkema and P. Villedieu (1998). A random particle method to simulate coalescence phenomena in dense liquid sprays. In Lecture Notes in Physics, volume 515, pages 488–493, Arcachon, France.

    Article  Google Scholar 

  • A. Kaufmann, O. Simonin, and T. Poinsot (2004). Direct numerical simulation of particle-laden homogeneous isotropic turbulent flows using a two-fluid model formulation. In Proceedings of 5th International Conference on Multiphase Flow (ICMF’04).

    Google Scholar 

  • F. Laurent, M. Massot, and P. Villedieu (2004). Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. Journal of Computational Physics, 194:505–543.

    Article  MATH  MathSciNet  Google Scholar 

  • D. L. Marchisio and R. O. Fox (2005). Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36:43–73.

    Article  Google Scholar 

  • D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. D. Vigil, and A. A. Barresi (2003a). Quadrature method of moments for population-balance equations. AIChE Journal, 49:1266–1276.

    Article  Google Scholar 

  • D. L. Marchisio, R. D. Vigil, and R. O. Fox (2003b). Quadrature method of moments for aggregation-breakage processes. Journal of Colloid and Interface Science, 258:322–334.

    Article  Google Scholar 

  • R. McGraw (1997). Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27:255–265.

    Article  Google Scholar 

  • R. S. Miller and J. Bellan (1999). Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. Journal of Fluids Mechanics, 384:293–338.

    Article  MATH  Google Scholar 

  • R. S. Miller and J. Bellan (2000). Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer. Physics of Fluids, 12(3):650–671.

    Article  Google Scholar 

  • B. Perthame (1990). Boltzmann type schemes for compressible Euler equations in one and two space dimensions. SIAM Journal of Numerical Analysis, 29:1–19.

    Article  MathSciNet  Google Scholar 

  • S. B. Pope (2000). Turbulent Flows. Cambridge University Press, Cambridge, United Kingdom.

    MATH  Google Scholar 

  • D. Ramkrishna (2000). Population Balances. Academic Press, San Diego, USA.

    Google Scholar 

  • J. Réveillon, C. Péra M. Massot, and R. Knikker (2004). Eulerian analysis of the dispersion of evaporating polydispersed sprays in a statistically stationary turbulent flow. Journal of Turbulence, 5(1):1–27.

    Article  Google Scholar 

  • S. Subramaniam (2000). Statistical representation of a spray as a point process. Physics of Fluids, 12:2413–2431.

    Article  Google Scholar 

  • F. A. Williams (1958). Spray combustion and atomization. Physics of Fluids, 1:541–545.

    Article  MATH  Google Scholar 

  • D. L. Wright, R. McGraw, and D. E. Rosner (2001). Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering particle populations. Journal of Colloid and Interface Science, 236:242–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Fox, R.O. (2007). Introduction and Fundamentals of Modeling Approaches for Polydisperse Multiphase Flows. In: Marchisio, D.L., Fox, R.O. (eds) Multiphase Reacting Flows: Modelling and Simulation. CISM International Centre for Mechanical Sciences, vol 492. Springer, Vienna. https://doi.org/10.1007/978-3-211-72464-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72464-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72463-7

  • Online ISBN: 978-3-211-72464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics