Skip to main content

Altered regulation of iron transport and storage in Parkinson’s disease

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

Parkinson’s disease (PD) is characterized by the death of dopaminergic neurons in the substantia nigra. This neuronal degeneration is associated with a strong microglial activation and iron accumulation in the affected brain structures. The increased iron content may result from an increased iron penetration into the brain parenchyma due to a higher expression of lactoferrin and lactoferrin receptors at the level of the blood vessels and dopaminergic neurons in the substantia nigra in PD. Iron may also accumulate in microglial cells after phagocytosis of dopaminergic neurons. These effects may be reinforced by a lack of up-regulation of the iron storage protein ferritin, as suggested by an absence of change in iron regulatory protein 1 (IRP-1) control of ferritin mRNA translation in PD. Thus, a dysregulation of the labile iron pool may participate in the degenerative process affecting dopaminergic neurons in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisen P (1992) Entry of iron into cells: a new role for the transferring receptor in modulating iron release from transferrin. Ann Neurol 32[Suppl]: S62–S68

    Article  PubMed  CAS  Google Scholar 

  • Arvidson B (1994) A review of axonal transport of metals. Toxicology 88: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem 65: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74: 2213–2216

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114: 1953–1975

    PubMed  Google Scholar 

  • Faucheux BA, Hauw JJ, Agid Y, Hirsch EC (1997) The density of [125I]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson’s disease. Brain Res 749: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Herrero MT, Villares J, Levy R, Obeso JA, Hauw JJ, Agid Y, Hirsch EC (1995) Autoradiographic localization and density of [125I]-Ferrotransferrin binding sites in the striatum of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 691: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Hirsch EC, Villares J, Selimi F, Mouatt-Prigent A, Javoy-Agid F, Hauw JJ, Agid Y (1993) Distribution of 125I-Ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem 60: 2338–2341

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86: 1142–1148

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC (2002) Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem 83: 320–330

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci 92: 9603–9607

    Article  PubMed  CAS  Google Scholar 

  • Fillebeen C, Ruchoux MM, Mitchell V, Vincent S, Benaissa M, Pierce A (2001) Lactoferrin is synthesized by activated microglia in the human substantia nigra and its synthesis by the human microglial CHME cell line is upregulated by tumor necrosis factor alpha or 1-methyl-4-phenylpyridinium treatment. Brain Res Mol Brain Res 96: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Mochizuki H, Imai H, Akiyama H, Mizuno Y (1996) An immunohistochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 724: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Arosi P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275: 161–203 Review

    Article  PubMed  Google Scholar 

  • Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93: 8175–8182 Review

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Dugas N, Faucheux BA, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999) Fc(epsilon)RII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-a in glial cells. J Neurosci 19: 3440–3447

    PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Hirsch EC, Dumas S, Duyckaerts C, Mallet J, Agid Y (1990) Decreased tyrosine hydroxylase messenger mRNA in the surviving dopamine neurons in Parkinson’s disease: an in situ hybridization study. Neuroscience 38: 245–253

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Tooyama I, Yamada T, Walker DG, McGeer PL (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain. Am J Pathol 142: 1574–1585

    PubMed  CAS  Google Scholar 

  • Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR (1994) The ironbinding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis. Brain Res 650: 20–31

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Med 5: 1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, Schapira AH (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881

    Article  PubMed  CAS  Google Scholar 

  • Mazurier J, Legrand D, Hu WL, Montreuil J, Spik G (1989) Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur J Biochem 179: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Mulero V, Brock JH (1999) Regulation of iron metabolism in murine J774 macrophages: role of nitric oxide-dependent and-independent pathways following activation with gamma interferon and lipopolysaccharide. Blood 94: 2383–2389

    PubMed  CAS  Google Scholar 

  • Osmand AP, Switzer III RC (1991) Differential distribution of lactoferrin and Alz-50 immunoreactivities in neuritic plaques and neurofibrillary tangles in Alzheimer’s disease. In: Iqbal K, McLachlan RC, Winblad B, Wisniewski HM (eds) Alzheimer’s disease: basic mechanism, diagnosis and therapeutic strategies. Wiley, New York, pp 219–227

    Google Scholar 

  • Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann Neurol 37: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56: 978–982

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76: 1766–1773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Hirsch, E.C. (2006). Altered regulation of iron transport and storage in Parkinson’s disease. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics