Skip to main content

Somatosensory cortex stimulation for deafferentation pain

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Functional neuroimaging has demonstrated that a relationship exists between the intensity of deafferentation pain and the degree of deafferentation- related reorganization of the primary somatosensory cortex. It has also revealed that this cortical reorganization can be reversed after the attenuation of pain. Deafferentation pain is also associated with hyperactivity of the somatosensory thalamus and cortex. Therefore, in order to suppress pain, it seems logical to attempt to modify this deafferentation- related somatosensory cortex hyperactivity and reorganization. This can be achieved using neuronavigation-guided transcranial magnetic stimulation (TMS), a technique that is capable of modulating cortical activity. If TMS is capable of suppressing deafferentation pain, this benefit should be also obtained by the implantation of epidural stimulating electrodes over the area of electrophysiological signal abnormality in the primary somatosensory cortex. The first studies demonstrated a statistically significant pain suppression in all patients and a clinically significant pain suppression in 80% of them. This clinical experience suggests that somatosensory cortex stimulation may become a neurophysiology- based new approach for treating deafferentation pain in selected patients. In this chapter, we review the relevant recent reports and describe our studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babiloni C, Babiloni F, Carducci F, Cincotti F, Rosciarelli F, Arendt-Nielsen L, Chen AC, Rossini PM (2002) Human brain oscillatory activity phase-locked to painful electrical stimulations: a multi-channel EEG study. Hum Brain Mapp 15: 112–123

    Article  PubMed  Google Scholar 

  2. Bekisz M, Wrobel A (1999) Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli. Neuroreport 10: 3589–3594

    Article  PubMed  CAS  Google Scholar 

  3. Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26: 302–308

    Article  PubMed  Google Scholar 

  4. Brown JA, Barbaro NM (2003) Motor cortex stimulation for central and neuropathic pain: current status. Pain 104: 431–435

    Article  PubMed  Google Scholar 

  5. Bruehlmeier M, Dietz V, Leenders KL, Roelcke U, Missimer J, Curt A (1998) How does the human brain deal with a spinal cord injury? Eur J Neurosci 10: 3918–3922

    Article  PubMed  CAS  Google Scholar 

  6. Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21: 149–186

    Article  PubMed  CAS  Google Scholar 

  7. Chowdhury SA, Suga N (2000) Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83: 1856–1863

    PubMed  CAS  Google Scholar 

  8. Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W, Hallett M (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol 75: 350–357

    Article  PubMed  CAS  Google Scholar 

  9. Cohen YE, Saunders JC (1994) The effect of acoustic overexposure on the tonotopic organization of the nucleus magnocellularis. Hear Res 81: 11–21

    Article  PubMed  CAS  Google Scholar 

  10. Condes-Lara M, Barrios FA, Romo JR, Rojas R, Salgado P, Sanchez-Cortazar J (2000) Brain somatic representation of phantom and intact limb: a fMRI study case report. Eur J Pain 4: 239–245

    Article  PubMed  CAS  Google Scholar 

  11. Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J Neurosci 21: 9403–9413

    PubMed  CAS  Google Scholar 

  12. Corthout E, Uttl B, Walsh V, Hallett M, Cowey A (2000) Plasticity revealed by transcranial magnetic stimulation of early visual cortex. Neuroreport 11: 1565–1569

    Article  PubMed  CAS  Google Scholar 

  13. Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121 (Pt 12): 2301–2315

    Article  PubMed  Google Scholar 

  14. Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol 112: 565–582

    Article  PubMed  CAS  Google Scholar 

  15. De Mulder G, De Ridder D, Sunaert S, Moller A (2005) Somatosensory cortex stimulation for deafferentation pain: report on 5 cases. Neurosurgery (in press)

    Google Scholar 

  16. De Pascalis V, Cacace I, Massicolle F (2004) Perception and modulation of pain in waking and hypnosis: functional significance of phase-ordered gamma oscillations. Pain 112: 27–36

    Article  PubMed  Google Scholar 

  17. De Pascalis V, Cacace I (2005) Pain perception, obstructive imagery and phase-ordered gamma oscillations. Int J Psychophysiol 56: 157–169

    Article  PubMed  Google Scholar 

  18. Deacon T (1997) Evolution and intelligence: beyond the argument from design. In: Scheibel A, Schopf J (eds) The origin and evolution of intelligence. Jones and Bartlett, Boston, pp 103–136

    Google Scholar 

  19. Dietrich V, Nieschalk M, Stoll W, Rajan R, Pantev C (2001) Cortical reorganization in patients with high frequency cochlear hearing loss. Hear Res 158: 95–101

    Article  PubMed  CAS  Google Scholar 

  20. Doetsch GS, Harrison TA, MacDonald AC, Litaker MS (1996) Short-term plasticity in primary somatosensory cortex of the rat: rapid changes in magnitudes and latencies of neuronal responses following digit denervation. Exp Brain Res 112: 505–512

    Article  PubMed  CAS  Google Scholar 

  21. Donoghue JP (1995) Plasticity of adult sensorimotor representations. Curr Opin Neurobiol 5: 749–754

    Article  PubMed  CAS  Google Scholar 

  22. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27: 676–682

    Article  PubMed  CAS  Google Scholar 

  23. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375: 482–484

    Article  PubMed  CAS  Google Scholar 

  24. Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 4: 22

    Article  PubMed  Google Scholar 

  25. Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci USA 95: 12663–12670

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Larrea L, Peyron R, Mertens P, Laurent B, Mauguiere F, Sindou M (2000) Functional imaging and neurophysiological assessment of spinal and brain therapeutic modulation in humans. Arch Med Res 31: 248–257

    Article  PubMed  CAS  Google Scholar 

  27. Gorecki J, Hirayama T, Dostrovsky JO, Tasker RR, Lenz FA (1989) Thalamic stimulation and recording in patients with deafferentation and central pain. Stereotact Funct Neurosurg 52: 219–226

    Article  PubMed  CAS  Google Scholar 

  28. Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337

    Article  PubMed  CAS  Google Scholar 

  29. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702

    Article  PubMed  CAS  Google Scholar 

  30. Halbert J, Crotty M, Cameron ID (2002) Evidence for the optimal management of acute and chronic phantom pain: a systematic review. Clin J Pain 18: 84–92

    Article  PubMed  Google Scholar 

  31. Harrison RV, Ibrahim D, Mount RJ (1998) Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res 123: 449–460

    Article  PubMed  CAS  Google Scholar 

  32. Hartmann R, Shepherd RK, Heid S, Klinke R (1997) Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 112: 115–133

    Article  PubMed  CAS  Google Scholar 

  33. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8: 221–254

    Article  PubMed  CAS  Google Scholar 

  34. Jeanmonod D, Magnin M, Morel A (1996) Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119 (Pt 2): 363–375

    Article  PubMed  Google Scholar 

  35. Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91: 11748–11751

    Article  PubMed  CAS  Google Scholar 

  36. Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6: 325–356

    Article  PubMed  CAS  Google Scholar 

  37. Kandel ER (1991) Cellular mechanisms of hearing and the biological basis of individiuality. In: Kandel E, Schwartz J, Jessell T (eds) Principles of neural science. Appleton & Lange, Norwalk, Connecticut, pp 1009–1031

    Google Scholar 

  38. Katayama Y, Yamamoto T, Kobayashi K, Kasai M, Oshima H, Fukaya C (2001) Motor cortex stimulation for phantom limb pain: comprehensive therapy with spinal cord and thalamic stimulation. Stereotact Funct Neurosurg 77: 159–162

    Article  PubMed  CAS  Google Scholar 

  39. Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12: 797–807

    Article  PubMed  CAS  Google Scholar 

  40. Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15: 552–562

    Article  PubMed  CAS  Google Scholar 

  41. Kumar K, Toth C, Nath RK (1997) Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery 40: 736–746; discussion 746–747

    Article  PubMed  CAS  Google Scholar 

  42. Leake PA, Snyder RL, Rebscher SJ, Moore CM, Vollmer M (2000) Plasticity in central representations in the inferior colliculus induced by chronic single-vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hear Res 147: 221–241

    Article  PubMed  CAS  Google Scholar 

  43. Lende RA, Kirsch WM, Druckman R (1971) Relief of facial pain after combined removal of precentral and postcentral cortex. J Neurosurg 34: 537–543

    PubMed  CAS  Google Scholar 

  44. Lenz FA, Garonzik IM, Zirh TA, Dougherty PM (1998) Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations. Neuroscience 86: 1065–1081

    Article  PubMed  CAS  Google Scholar 

  45. Levy RM (2003) Deep brain stimulation for the treatment of intractable pain. Neurosurg Clin N Am 14: 389–399, vi

    Article  PubMed  Google Scholar 

  46. Llinas R, Ribary U, Joliot M, Wang X (1994) Content and context in temporal thalamocortical binding. In: Buzsaki G, Llinas R, Singer W (eds) Temporal coding in the brain. Springer, Berlin, pp 251–272

    Google Scholar 

  47. Llinas R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841–1849

    Article  PubMed  CAS  Google Scholar 

  48. Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28: 325–333

    Article  PubMed  CAS  Google Scholar 

  49. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96: 15222–15227

    Article  PubMed  CAS  Google Scholar 

  50. Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N (2001) Phantom movements and pain. An fMRI study in upper limb amputees. Brain 124: 2268–2277

    Article  PubMed  CAS  Google Scholar 

  51. MacDonald KD, Barth DS (1995) High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res 694: 1–12

    Article  PubMed  CAS  Google Scholar 

  52. Maihofner C, Handwerker HO, Neundorfer B, Birklein F (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61: 1707–1715

    PubMed  Google Scholar 

  53. Maihofner C, Handwerker HO, Neundorfer B, Birklein F (2004) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63: 693–701

    PubMed  Google Scholar 

  54. Maihofner C, Schmelz M, Forster C, Neundorfer B, Handwerker HO (2004) Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 19: 3211–3218

    Article  PubMed  Google Scholar 

  55. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224: 591–605

    Article  PubMed  CAS  Google Scholar 

  56. Moller A (2006) Neural plasticity and disorders of the nervous system, Cambridge University Press, Cambridge (in press)

    Google Scholar 

  57. Moller A (2006) Hearing: its physiology and pathophysiology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  58. Moller AR (1997) Similarities between chronic pain and tinnitus. Am J Otol 18: 577–585

    PubMed  CAS  Google Scholar 

  59. Moller AR (2000) Similarities between severe tinnitus and chronic pain. J Am Acad Audiol 11: 115–124

    PubMed  CAS  Google Scholar 

  60. Moulton EA, Keaser ML, Gullapalli RP, Greenspan JD (2005) Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol 93: 2183–2193

    Article  PubMed  CAS  Google Scholar 

  61. Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95: 10340–10343

    Article  PubMed  CAS  Google Scholar 

  62. Nguyen JP, Lefaucheur JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, Brugieres P, Pollin B, Feve A, Rostaing S, Cesaro P, Keravel Y (1999) Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain 82: 245–251

    Article  PubMed  CAS  Google Scholar 

  63. Nikolajsen L, Jensen TS (2001) Phantom limb pain. Br J Anaesth 87: 107–116

    Article  PubMed  CAS  Google Scholar 

  64. Palva S, Linkenkaer-Hansen K, Naatanen R, Palva JM (2005) Early neural correlates of conscious somatosensory perception. J Neurosci 25: 5248–5258

    Article  PubMed  CAS  Google Scholar 

  65. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18: 49–65

    Article  PubMed  CAS  Google Scholar 

  66. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30: 263–288

    Article  PubMed  CAS  Google Scholar 

  67. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252: 1857–1860

    Article  PubMed  CAS  Google Scholar 

  68. Porro CA (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9: 354–369

    Article  PubMed  Google Scholar 

  69. Porro CA, Lui F, Facchin P, Maieron M, Baraldi P (2004) Perceptrelated activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imaging 22: 1539–1548

    Article  PubMed  Google Scholar 

  70. Ramachandran VS (1993) Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci USA 90: 10413–10420

    Article  PubMed  CAS  Google Scholar 

  71. Ramachandran VS, Hirstein W (1998) The perception of phantom limbs The D. O. Hebb lecture. Brain 121 (Pt 9): 1603–1630

    Article  PubMed  Google Scholar 

  72. Recanzone GH, Merzenich MM, Dinse HR (1992) Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cereb Cortex 2: 181–196

    Article  PubMed  CAS  Google Scholar 

  73. Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR (1992) Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol 67: 1031–1056

    PubMed  CAS  Google Scholar 

  74. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103

    PubMed  CAS  Google Scholar 

  75. Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JP, Lado F, Mogilner A, Llinas R (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88: 11037–11041

    Article  PubMed  CAS  Google Scholar 

  76. Rinaldi PC, Young RF, Albe-Fessard D, Chodakiewitz J (1991) Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain. J Neurosurg 74: 415–421

    PubMed  CAS  Google Scholar 

  77. Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471

    Article  PubMed  CAS  Google Scholar 

  78. Rubsamen R (1992) Postnatal development of central auditory frequency maps. J Comp Physiol [A] 170: 129–143

    CAS  Google Scholar 

  79. Sanes DH, Song J, Tyson J (1992) Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Brain Res Dev Brain Res 67: 47–55

    Article  PubMed  CAS  Google Scholar 

  80. Sauve K (1999) Gamma-band synchronous oscillations: recent evidence regarding their functional significance. Conscious Cogn 8: 213–224

    Article  PubMed  CAS  Google Scholar 

  81. Sherman RA, Sherman CJ, Parker L (1984) Chronic phantom and stump pain among American veterans: results of a survey. Pain 18: 83–95

    Article  PubMed  CAS  Google Scholar 

  82. Sininger YS, Doyle KJ, Moore JK (1999) The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatr Clin North Am 46: 1–14

    Article  PubMed  CAS  Google Scholar 

  83. Snyder RL, Leake PA (1997) Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comp Neurol 384: 293–311

    Article  PubMed  CAS  Google Scholar 

  84. Staecker H, Galinovic-Schwartz V, Liu W, Lefebvre P, Kopke R, Malgrange B, Moonen G, Van De Water TR (1996) The role of the neurotrophins in maturation and maintenance of postnatal auditory innervation. Am J Otol 17: 486–492

    PubMed  CAS  Google Scholar 

  85. Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 16: 392–417

    PubMed  CAS  Google Scholar 

  86. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101: 243–276

    Article  PubMed  CAS  Google Scholar 

  87. Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97: 11807–11814

    Article  PubMed  CAS  Google Scholar 

  88. Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4: 783–794

    Article  PubMed  CAS  Google Scholar 

  89. Theuvenet PJ, Dunajski Z, Peters MJ, van Ree JM (1999) Responses to median and tibial nerve stimulation in patients with chronic neuropathic pain. Brain Topogr 11: 305–313

    Article  PubMed  CAS  Google Scholar 

  90. Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364: 59–60

    Article  PubMed  CAS  Google Scholar 

  91. Tonndorf J (1987) The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus. Hear Res 28: 271–275

    Article  PubMed  CAS  Google Scholar 

  92. Trojan S, Pokorny J (1999) Theoretical aspects of neuroplasticity. Physiol Res 48: 87–97

    PubMed  CAS  Google Scholar 

  93. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl 52: 137–139

    CAS  Google Scholar 

  94. Walsh V, Ashbridge E, Cowey A (1998) Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36: 45–49

    Article  PubMed  CAS  Google Scholar 

  95. Walsh V, Ashbridge E, Cowey A (1998) Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia 36: 363–367

    Article  PubMed  CAS  Google Scholar 

  96. Walsh V, Rushworth M (1999) A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37: 125–135

    PubMed  CAS  Google Scholar 

  97. Weinberger NM, Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol Neurootol 3: 145–167

    Article  PubMed  CAS  Google Scholar 

  98. Weiss T, Miltner WH, Huonker R, Friedel R, Schmidt I, Taub E (2000) Rapid functional plasticity of the somatosensory cortex after finger amputation. Exp Brain Res 134: 199–203

    Article  PubMed  CAS  Google Scholar 

  99. Whitehead MC, Morest DK (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14: 255–276

    Article  PubMed  CAS  Google Scholar 

  100. Wiech K, Preissl H, Lutzenberger W, Kiefer RT, Topfner S, Haerle M, Schaller HE, Birbaumer N (2000) Cortical reorganization after digit-to-hand replantation. J Neurosurg 93: 876–883

    Article  PubMed  CAS  Google Scholar 

  101. Woolsey TA, Wann JR (1976) Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J Comp Neurol 170: 53–66

    Article  PubMed  CAS  Google Scholar 

  102. Youell PD, Wise RG, Bentley DE, Dickinson MR, King TA, Tracey I, Jones AK (2004) Lateralisation of nociceptive processing in the human brain: a functional magnetic resonance imaging study. Neuroimage 23: 1068–1077

    Article  PubMed  Google Scholar 

  103. Zeman A (2002) Consciousness, a user’s guide. Yale University Press, New Haven

    Google Scholar 

  104. Zhang Y, Suga N (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol 84: 325–333

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

De Ridder, D., De Mulder, G., Verstraeten, E., Sunaert, S., Moller, A. (2007). Somatosensory cortex stimulation for deafferentation pain. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics