Skip to main content

Local receptive field diversity within cortical neuronal populations

  • Chapter
Somesthesis and the Neurobiology of the Somatosensory Cortex

Part of the book series: Advances in Life Sciences ((ALS))

Summary

The aim of this review paper is to draw attention to a little-appreciated but ubiquitous feature of cerebral cortical organization that we propose is fundamental to an understanding of cortical functioning. Specifically, we (i) describe evidence supporting the idea that neighboring cells in the cortex have richly diverse receptive fields, and (ii) suggest some of the possible mechanisms that generate this receptive field diversity. The possible roles of local receptive field diversity in cortical information processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M. (1982) Local cortical circuits. An electrophysiological study. Springer-Verlag, Berlin.

    Google Scholar 

  • Abeles, M. and Goldstein, M. H., Jr. (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth.Journal of Neurophysiology33:172–187.

    PubMed  CAS  Google Scholar 

  • Aertsen, A., Gerstein, G.L., Habib, M.K. and Palm, G. (1989) Dynamics of neuronal fringe correlation: Modulation of “effective connectivity”Journal of Neurophysiology61:900–917.

    PubMed  CAS  Google Scholar 

  • Albus, K. (1975a) A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat: I. The precision of the topography.Experimental Brain Research24:159–179.

    Article  CAS  Google Scholar 

  • Albus, K. (1975b) A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat: I. The spatial organization of the orientation domain.Experimental Brain Research24: 181 – 202.

    Article  CAS  Google Scholar 

  • Brooks, V.B., Rudomin, P. and Slayman, C.L. (1961) Peripheral receptive fields of neurons in the cat’s cerebral cortex.Journal of Neurophysiology24:302–325.

    Google Scholar 

  • Creutzfeldt, O., Innocenti, G.M. and Brooks, D. (1974) Vertical organization in the visual cortex (area 17) in the cat.Experimental Brain Research21:315–336.

    CAS  Google Scholar 

  • DeFelipe, J., Hendry, M.C. and Jones, E.G. (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity.Brain Research503:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Evarts, E.V. (1967) Representation of movements and muscles by pyramidal tract neurons of the precentrai motor cortex. In: M.D. Yahr and D.P. Purpura (eds):Neurophysiological Bases of Normal and Abnormal Motor Activities, Raven Press, Hewlett, NY.

    Google Scholar 

  • Favorov, O.V., Diamond, M.E. and Whitsel, B.L. (1987) Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat.Proceedings of the National Academy of Sciences of the United States of America84:6606–6610.

    Article  PubMed  CAS  Google Scholar 

  • Favorov, O.V. and Whitsel, B.L. (1988a) Spatial organization of the peripheral input to area 1 cell columns: I. The detection of “segregates.”Brain Research Reviews13:25–42.

    Article  Google Scholar 

  • Favorov, O.V. and Whitsel, B.L. (1988b) Spatial organization of the peripheral input to area 1 cell columns: II. The forelimb representation achieved by a mosaic of segregates.Brain Research Reviews13:43–56.

    Article  Google Scholar 

  • Favorov, O.V. and Diamond, M.E. (1990) Demonstration of discrete place-defined columns — segregates — in the cat SI.Journal of Comparative Neurology 298:97–112.

    Article  PubMed  CAS  Google Scholar 

  • Favorov, O.V. and Kelly, D.G. (1994a) Minicolumnar organization within somatosensory cortical segregates: I.Development of afferent connections.Cerebral Cortex4:408–427.

    Article  PubMed  CAS  Google Scholar 

  • Favorov, O.V. and Kelly, D.G. (1994b) Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties.Cerebral Cortex4:428–442.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, I., Tanaka, K., Ito, M. and Cheng, K. (1992) Columns for visual features of objects in monkey inferotemporal cortex.Nature360:343–346.

    Article  PubMed  CAS  Google Scholar 

  • Gawne, T.J., Kjaer, T.W., Hertz, J.A. and Richmond, B.J. (1993) The responses of adjacent cortical neurons are highly independent throughout the visual system.Society for Neuroscience Abstracts19:424.

    Google Scholar 

  • Gawne, T.J. and Richmond, B.J. (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons?Journal of Neuroscience13:2758–2771.

    PubMed  CAS  Google Scholar 

  • Ghose, I., Ohzawa, I. and Freeman, R.D. (1994) Receptive-field maps of correlated discharge between pairs of neurons in the cat’s visual cortex.Journal of Neurophysiology11:330–346.

    Google Scholar 

  • Gochin, P.M., Miller, E.K., Gross, C.G. and Gerstein, G.L. (1991) Functional interactions among neurons in inferior temporal cortex of the awake macaque.Experimental Brain Research84:505–516.

    Article  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1962) Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex.Journal of Physiology160:106–154.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1974a) Sequence regularity and geometry of orientation columns in the monkey striate cortex.Journal of Comparative Neurology158:267–294.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1974b) Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor.Journal of Comparative Neurology158:295–305.

    Article  PubMed  CAS  Google Scholar 

  • Iwamura, J., Tanaka, M., Sakamoto, M. and Hikosaka, O. (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey.Experimental Brain Research58:400–411.

    CAS  Google Scholar 

  • Jones, E.G. (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey.Journal of Comparative Neurology160:205–267.

    Article  PubMed  CAS  Google Scholar 

  • Lemon, RN. and Porter, R. (1976) Afferent input to movement-related precentrai neurons in conscious monkeys.Proceedings of the Royal Society of London, series B194:313–339.

    Article  CAS  Google Scholar 

  • Lemon, R.N., Hanby, J.A. and Porter, R. (1976) Relationship between the activity of precentrai neurons during active and passive movements in conscious monkey.Proceedings of the Royal Society of London, series B194:341–373.

    Article  CAS  Google Scholar 

  • Maldonado, P.E. and Gray, CM. (1994) Heterogeneity in local distributions of receptive field properties in the cat primary visual cortex.Society for Neuroscience Abstracts20:625.

    Google Scholar 

  • McCasland, J.S. and Woolsey, T.A. (1988) High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.Journal of Comparative Neurology278:555–569.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, T.M. and Whitsel, B.L., Dreyer, D.A. (1982) Anterior parietal cortical topographic organization in macaque monkey: a re-evaluation.Journal of Neurophysiology48:289–317.

    PubMed  CAS  Google Scholar 

  • McKenna, T.M., McMullen, T.A. and M.F. Schlesinger (1994) The brain as a dynamic physical system.Neuroscience60:587–605.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Sur, M., Nelson, R. J. and Kaas, J. H. (1981) Organization of the SI cortex: multiple cutaneous representations in areas 3b and 1 of the owl monkey. In: CN Woolsey (ed.), Cortical Sensory Organization, vol. 1, Humana Press, Clifton, N.J., pp. 47–66.

    Google Scholar 

  • Mountcastle, V.B. (1978) An organizing principle for cerebral function: the unit module of the distributed system. In: Mountcastle VB and Edelman GM (eds.):The Mindful Brain, MIT Press, Cambridge, MA, pp. 7–50.

    Google Scholar 

  • Peters, A. and Yilmaz, E. (1993) Neuronal organization in area 17 of cat visual cortex.Cerebral Cortex3:49–68.

    Article  PubMed  CAS  Google Scholar 

  • Powell, T.P.S. and Mountcastle, V.B. (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture.Bulletin of the Johns Hopkins Hospital105:133–162.

    PubMed  CAS  Google Scholar 

  • Rakic, P. (1988) Specification of cerebral cortical areas.Science241:170–176.

    Article  PubMed  CAS  Google Scholar 

  • South, D.A. and Weinberger, N.M. (1994) Tunning characteristic heterogeneity of constituent single units within auditory cortical cluster recordings.Society for Neuroscience Abstracts20:324.

    Google Scholar 

  • Tommerdahl, M., Favorov, O.V., Whitsel, B.L., Nakhle, B. and Gonchar, Y.A. (1993) Minicolumnar activation patterns in cat and monkey SI cortex.Cerebral Cortex3:399–411.

    Article  PubMed  CAS  Google Scholar 

  • Vaadia, E. and Aertsen, A. (1992) Coding and computation in the cortex: single-neuron activity and cooperative phenomena. In: A. Aertsen and V. Braitenberg (eds), Information processing in the cortex. Experiments and theory, Berlin Springer-Verlag, pp. 81–122.

    Google Scholar 

  • von der Marlsburg, C. (1981) The correlation theory of brain function. Internal report 81 – 2. Max-Planck-Institute for Biophysical Chemistry, Gottingen, (FRG).

    Google Scholar 

  • Welt, C, Aschoff, J., Kameda, K. and Brooks, V.B. (1967) Intracortical organization of cat’s sensory motor neurons. In: M.D. Yahr and D.P. Purpura (eds):Neurophysiological Bases of Normal and Abnormal Motor Activities, Hewlett, NY, Raven Press.

    Google Scholar 

  • Zohary E., Shadlen M.N. and Newsome, W.T. (1994) Correlated neuronal discharge rate and its implications for psychophysical performance.Nature370:140–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Favorov, O.V., Kelly, D.G. (1996). Local receptive field diversity within cortical neuronal populations. In: Franzén, O., Johansson, R., Terenius, L. (eds) Somesthesis and the Neurobiology of the Somatosensory Cortex. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9016-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9016-8_33

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9868-3

  • Online ISBN: 978-3-0348-9016-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics