Skip to main content

Optical imaging of intrinsic signals in somatosensory cortex

  • Chapter
Somesthesis and the Neurobiology of the Somatosensory Cortex

Part of the book series: Advances in Life Sciences ((ALS))

Summary

The method of optical imaging of intrinsic signals emitted in the near-infrared (IR; 820-846 nm) was used to study the response of somatosensory cortex (SI) of anesthetized cats and squirrel monkeys to precisely controlled vibrotactile stimuli. The cortical territory exhibiting decreased average IR reflectance in response to a low frequency, modest amplitude (25 Hz; 200 - 400 microns peak-to-peak, sinusoidal) vibrotactile stimulus shifted location in a manner consistent with a published map of SI topographical organization generated from receptive field mapping observations. The size of the SI territory responding with a decrease in reflectance was greatly reduced by intravenous administration of even small doses of a selective NMDA receptor blocker (ketamine). Extracellular single and multiunit recordings obtained during microelectrode penetrations of the same SI region studied with the IR imaging method revealed that (i) the spike discharge activity of neurons sampled within territories exhibiting decreased average IR reflectance values in response to a vibrotactile stimulus was consistently elevated by the stimulus, and (ii) the discharge activity of neurons sampled in regions exhibiting stimulus-evoked increases in average IR reflectance was consistently depressed. Neurons located in regions which did not exhibit a reflectance change rarely were influenced by the stimulus. Analysis of the time course of the IR reflectance changes evoked by both short (500-1000 msec) and long-duration (6-10 sec) stimuli revealed considerable dynamics in the two types of SI territories (excitatory vs. inhibitory) that modify their average IR reflectance in response to vibrotactile stimulation. In a final series of experiments we evaluated the IR intrinsic signals evoked in SI of anesthetized subjects in whom the spinal dorsal column pathway had been surgically transected. The findings show that in the absence of the spinal dorsal column pathway, the dynamics of the IR intrinsic signals evoked in SI by a low frequency vibrotactile stimulus are strikingly different than observed in normal subjects. In a number of respects, the abnormal dynamics of the IR intrinsic signals observed in SI after dorsal column transection appear to parallel the disturbances in vibrotactile detection and discriminative capacity reported for monkeys with a selective dorsal column lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chubbuck, J.G. (1966). Small-motion biological stimulator. APL Technical Digest, May-June: 18–23.

    Google Scholar 

  • Cohen, L.B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission. Physiological Reviews 53:373–418.

    PubMed  CAS  Google Scholar 

  • Daw, N.W., Stein, P.S.G., and Fox, K. (1993). The role of NMDA receptors in information processing. Ann Rev Neurosci 16:207–222.

    Article  PubMed  CAS  Google Scholar 

  • Delemos, K.A., Whitsel, B.L., Favorov, O. and Tommerdahl, M. (1995). Effects of vibrotactile adaptation on responses of cutaneous mechanoreceptive afferents and somatosensory cortical neurons. In preparation.

    Google Scholar 

  • Duncan, G. H., Dreyer, D.A., McKenna, T.M. and Whitsel, B.L. (1982). Dose- and time- dependent effects of ketamine on SI neurons with cutaneous receptive fields. J. Neurophysiol. 47:677–699.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Frostig, R. D., Siegal, R. M., and Barfeld, E. (1991). High resolution optical imaging of functional architecture in the awake monkey. Proc. Natl. Acad. Sci. U.S.A. 88:11559–11563.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E. E., Frostig, R.D. and Hildesheim, R (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neuroscience 14:2545–2568.

    CAS  Google Scholar 

  • Grinvald, A. (1985). Real-time optical mapping of neuronal activity: From single growth cones to the intact mammalian brain. Ann. Rev. Neuroscience 8:263–305.

    Article  CAS  Google Scholar 

  • Goble, A.K. and Hollins, M. (1993). Vibrotactile adaptation enhances amplitude discrimination. J. Acoustical Soc. America 93:418–424.

    Article  CAS  Google Scholar 

  • Goble, A. and Hollins, M. (1994) Vibrotactile adaptation enhances frequency discrimination. J. Acoust. Soc. Am. 96: 771–780.

    Article  PubMed  CAS  Google Scholar 

  • Haglund, M., Ojemann, G. and Hochman, D. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358:668–671.

    Article  PubMed  CAS  Google Scholar 

  • Haglund, M., Ojemann, G and Blasdel G (1993). Optical imaging of bipolar cortical stimulation. J Neurosurgery 78: 785 – 793.

    Article  CAS  Google Scholar 

  • Hollins, M., Goble, A.K., Whitsel, B.L. and Tommerdahl, M. (1990). Time course and action spectrum of vibrotactile adaptation. Somatosensory and Motor Research 7:205–221.

    Article  PubMed  CAS  Google Scholar 

  • Hollins, M., Delemos, KA. and Goble, AK. (1995). Vibrotactile adaptation of the RA system: A psychophysical analysis. This volume.

    Google Scholar 

  • Lee C-J, Whitsel BL (1992) Mechanisms underlying somatosensory cortical dynamics: I.In vivostudies. Cerebral Cortex 2:81–106.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.-J., Whitsel, B. L., and Tommerdahl, M. (1992) Mechanisms underlying somatosensory cortical dynamics: II. In vitro studies. Cerebral Cortex 2: 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Lieke, E., Frostig, R., Arieli, A., Ts’o, D., Hildesheim, R., and Grinvald, A. (1989). Optical imaging of cortical activity: Real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annual Rev. Physiol. 51:543–59.

    Article  CAS  Google Scholar 

  • McKenna TM, Whitsel BL, Dreyer DA(1982) Anterior parietal cortical topographic organization in macaque monkey: a re-evaluation. J. Neurophysiol 48:289–317.

    PubMed  CAS  Google Scholar 

  • Narayan, SM., Santoli,, EM., and Toga, AW. (1994) Mapping functional activity in rodent cortex using optical intrinsic signals. Cerebral Cortex 4:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Nelson, R.J., and Kaas, J. H. (1982) Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primates. J. Comp. Neurol. 211:177–192.

    Article  PubMed  CAS  Google Scholar 

  • Tommerdahl, M., Whitsel, B.L., Nakhle, B. and Favorov, O. (1993). Minicolumnar activation patterns in cat and monkey SI cortex. Cerebral Cortex 3:399–411.

    Article  PubMed  CAS  Google Scholar 

  • Tommerdahl, M., Vierck, C, Whitsel, B., Cooper, B., Juliano, S. and Nahkle, B. (1995). Effects of dorsal column lesions on metabolic activity patterns in somatosensory cortex Cerebral Cortex. In Press.

    Google Scholar 

  • Whitsel, B.L., Favorov, O., Kelly, D.G., and Tommerdahl, M. (1991). Mechanisms of dynamic peri- and intra-columnar interactions in somatosensory cortex: Stimulus-specific contrast enhancement by NMDA receptor activation. In:Information Processing in the Somatosensory System Franzen, O. and Westman, J. (eds.), New York, Stockton Press, pp. 353–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Tommerdahl, M., Whitsel, B. (1996). Optical imaging of intrinsic signals in somatosensory cortex. In: Franzén, O., Johansson, R., Terenius, L. (eds) Somesthesis and the Neurobiology of the Somatosensory Cortex. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9016-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9016-8_31

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9868-3

  • Online ISBN: 978-3-0348-9016-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics