Skip to main content

Glutathione: A key role in skeletal muscle metabolism

  • Chapter
Oxidative Stress in Skeletal Muscle

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

Summary

Glutathione (GSH) is a low-molecular-weight thiol that is redox active and mostly present in mM concentrations in mammalian cells. High activity of GSH-dependent enzymes and remarkable GSH synthesizing ability of the skeletal muscle suggest that this tissue is a significant component of the complex inter-organ GSH homoeostasis. The hypothesis that skeletal muscle is a major player in whole body GSH metabolism has also been strongly supported by studies on hepatectomized rats. In addition to the above-mentioned functions of GSH, a role of this thiol in the regulation of muscle contraction has been proposed. Myoblast GSH status has also been shown to markedly regulate the inducible activation of the redox sensitive transcription factor NF-кB. Skeletal muscle GSH levels vary depending on the metabolic profile of the tissue. In healthy human skeletal muscle fibers, the level of reduced glutathione is higher in aerobic type I fibers than in anaerobic type II fibers. Another major determinant of skeletal muscle GSH status is the state of physical activity of the tissue. Endurance and sprint training enhances, whereas immobilization down-regulates, the skeletal muscle GSH level. Factors such as the central role of GSH in the antioxidant network, lowering of skeletal muscle GSH during exercise, and certain pathophysiological conditions have generated considerable interest in the search for effective pro-GSH nutritional supplements. Among the supplements that have been tested for their ability to serve as pro-GSH agents, α-lipoate and is N-acetyl-L-cysteine hold promise for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson ME (1997) Glutathione and glutathione delivery compounds. Adv Pharmacol 38: 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Atalay M, Seene T, Hänninen O and Sen CK (1996) Skeletal muscle and heart antioxidant defences in response to sprint training. Acta Physiol Scand 158: 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Austin L, Arthur H, de Niese M, Gurusinghe A and Baker MS (1988) Micromethods in single muscle fibers. 2. Determination of glutathione reductase and glutathione peroxidase. Anal Biochent 174: 575–579.

    Article  CAS  Google Scholar 

  • Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K and Grinton S (1993) High intensity training- induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25: 1135–1140.

    PubMed  CAS  Google Scholar 

  • Droge W, Gross A, Hack V, Kinscherf R, Schykowski M, Bockstette M, Mihm S and Gaiter D (1997) Role of cysteine and glutathione in HIV infection and cancer cachexia: therapeutic intervention with N-acetylcysteine. Adv Pharniacol 38: 581–600.

    Article  CAS  Google Scholar 

  • Duarte JA, Appell HJ, Carvalho F, Bastos ML and Soares JM (1993) Endothelium-derived oxidative stress may contribute to exercise-induced muscle damage. Int J Sport Med 14: 440–443.

    Article  CAS  Google Scholar 

  • Duarte JA, Carvalho F, Bastos ML, Soares JM and Appell HJ (1994) Do invading leukocytes contribute to the decrease in glutathione concentrations indicating oxidative stress in exercised muscle, or are they important for its recovery? Eur J Appl Physiol 68: 48–53.

    Article  CAS  Google Scholar 

  • Duarte JA, Gloser S, Remiao F, Carvalho F, Bastos ML, Soares JM and Appell HJ (1997) Administration of tourniquet. I. Are edema and oxidative stress related to each other and to the duration of ischemia in reperfused skeletal muscle? Arch. Orthop Trauma Surg 116: 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Haapaniemi T, Sirsjo A, Nylander G and Larsson J (1995) Hyperbaric oxygen treatment attenuates glutathione depletion and improves metabolic restitution in postischemic skeletal muscle. Free Radic Res 23: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Hammarqvist F, Luo JL, Cotgreave IA, Andersson K and Wernerman J (1997) Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 25: 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Hellsten Y, Apple FS and Sjodin B (1996) Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 81: 1484–1487.

    PubMed  CAS  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25: 225–231.

    PubMed  CAS  Google Scholar 

  • Ji LL, Fu R and Mitchell EW (1992) Glutathione and antioxidant enzymes in skeletal muscle: effects of fiber type and exercise intensity. J Appl Physiol 73: 1854–1859.

    PubMed  CAS  Google Scholar 

  • Ji LL, Wu E and Thomas DP (1991) Effect of exercise training on antioxidant and metabolic functions in senescent rat skeletal muscle. Gerontology 37: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Atalay M, Laaksonen DE, Gul M, Roy S, Packer L, Hänninen O and Sen CK (1997) Tissue glutathione homeostasis in response to lipoate supplementation and exercise. In: Oxygen Club of California, Annual Meeting, Feb 27—March, 1, Santa Barbara.

    Google Scholar 

  • Khawli FA and Reid MB (1994) N-Acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol 77: 317–324.

    PubMed  CAS  Google Scholar 

  • Kondo H and Itokawa Y (1994) Oxidative stress in muscular atrophy. In: CK Sen, L Packer and O Hänninen (eds): Oxidative Stress in Muscular Atrophy. Elsevier Science BV, Amsterdam, pp 319–342.

    Google Scholar 

  • Kosower EM (1970) A role for glutathione in muscle contraction. Experientia 26: 760–761.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M and Muller D (1993) Aging, training and exercise. A review of effects on plasma glutathione and lipid peroxides. Sport Med 15: 196–209.

    Article  CAS  Google Scholar 

  • Kretzschmar M, Pfeifer U, Machnik G and Klinger W (1992) Glutathione homeostasis and turnover in the totally hepatectomized rat: evidence for a high glutathione export capacity of extrahepatic tissues. Exp Toxicol Pathol 44: 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK and Korthuis RJ (1990) Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 68: 2337–43.

    PubMed  CAS  Google Scholar 

  • Lew H and Quintanilha A (1991) Effects of endurance training and exercise on tissue antioxidative capacity and acetaminophen detoxification. Eur J Drug Metab Pharmacokin 16: 59–68.

    Article  CAS  Google Scholar 

  • Lew H, Pyke S and Quintanilha A (1985) Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett 185: 262–266.

    Article  PubMed  CAS  Google Scholar 

  • Marin E, Kretzschmar M, Arokoski J, Hänninen O and Klinger W (1993) Enzymes of glutathione synthesis in dog skeletal muscles and their response to training. Acta Physiol Scand 147: 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Martensson J and Meister A (1989) Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci USA 86: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Meijer AE (1991) The histochemical localization of reduced glutathione in skeletal muscle under different pathophysiological conditions. Acta Histochem 90: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Muller JM, Rupec RA and Baeuerle PA (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods 11: 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Posterino GS and Lamb GD (1996) Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol (Load) 496: 809–825.

    CAS  Google Scholar 

  • Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA and Dudley G (1994a) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266: R375–R380.

    CAS  Google Scholar 

  • Powers SK, Criswell D, Lawler J, Martin D, Ji LL, Herb RA and Dudley G (1994b) Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Resp Physiol 95: 227–237.

    Article  CAS  Google Scholar 

  • Reid MB, Stokic DS, Koch SM, Khawli FA and Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94: 2468–2474.

    Article  PubMed  CAS  Google Scholar 

  • Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79: 675–686.

    PubMed  CAS  Google Scholar 

  • Sen CK (1997) Nutritional biochemistry of cellular glutathione. J Nutr Biochem 8: 660–672.

    Article  CAS  Google Scholar 

  • Sen CK (1998) Redox signaling and the emerging potential of thiol antioxidants. Biochem Pharmacol 55; in press.

    Google Scholar 

  • Sen CK and Hänninen O (1994) Physiological antioxidants. In: CK Sen, L Packer and O Hänninen (eds): Physiological antioxidants. Elsevier Science Publishers BV, Amsterdam, pp 89–126.

    Google Scholar 

  • Sen CK and Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720.

    PubMed  CAS  Google Scholar 

  • Sen CK, Marin E, Kretzschmar M and Hänninen O (1992) Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73: 1265–1272.

    PubMed  CAS  Google Scholar 

  • Sen CK, Rahkila P and Hänninen O (1993) Glutathione metabolism in skeletal muscle derived cells of the L6 line. Acta Physiol Scand 148: 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Atalay M and Hänninen O (1994) Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol 77: 2177–2187.

    PubMed  CAS  Google Scholar 

  • Sen CK, Hänninen O and Orlov SN (1995) Unidirectional sodium and potassium flux in myogenic L6 cells: mechanisms and volume-dependent regulation. JAppl Physiol 78: 272–281.

    CAS  Google Scholar 

  • Sen CK, Khanna S, Reznick AZ, Roy S and Packer L (1997a). Glutathione regulation of tumor necrosis factoralpha-induced NF-kappa B activation in skeletal muscle-derived L6 cells (In Process Citation). Biochem Biophys Res Commun 237: 645–649.

    Article  CAS  Google Scholar 

  • Sen CK, Roy S, Han D and Packer L (1997b). Regulation of cellular thiols in human lymphocytes by alphalipoic acid: A flow cytometric analysis. Free Radical Biol Med 22: 1241–1257.

    Article  CAS  Google Scholar 

  • Sen CK, Roy S and Packer L (1997c). Therapeutic potential of the antioxidant and redox properties of alphalipoic acid. In: L Montagnier, R Olivier and C Pasquier (eds): Therapeutic Potential of the Antioxidant and Redox Properties of Alpha-Lppoic Acid. Marcel Dekker, New York, pp 251–267.

    Google Scholar 

  • Sirsjo A, Arstrand K, Kagedal B, Nylander G and Gidlof A (1996a). In situ microdialysis for monitoring of extracellular glutathione levels in normal, ischemic and post-ischemic skeletal muscle. Free Radic Res 25: 385–391.

    Article  CAS  Google Scholar 

  • Sirsjo A, Kagedal B, Arstrand K, Lewis DH, Nylander G and Gidlof A (1996b). Altered glutathione levels in ischemic and postischemic skeletal muscle: difference between severe and moderate ischemic insult. J Trauma 41: 123–128.

    Article  CAS  Google Scholar 

  • Taylor CG, Nagy LE and Bray TM (1996) Nutritional and hormonal regulation of glutathione homeostasis. Curr Top Cell Regul 34: 189–208.

    Article  PubMed  CAS  Google Scholar 

  • Venditti P and Di Meo S (1996) Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys 331: 63–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Sen, C.K. (1998). Glutathione: A key role in skeletal muscle metabolism. In: Reznick, A.Z., Packer, L., Sen, C.K., Holloszy, J.O., Jackson, M.J. (eds) Oxidative Stress in Skeletal Muscle. MCBU Molecular and Cell Biology Updates. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8958-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8958-2_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9844-7

  • Online ISBN: 978-3-0348-8958-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics