Skip to main content

Testing speciation models with DNA sequence data

  • Chapter
Molecular Approaches to Ecology and Evolution

Summary

This chapter reviews an approach to the study of speciation that is based on patterns of genetic variation within and between closely related species. Historically, research on the genetic mechanisms of speciation, and of species divergence, is very difficult–suffering from both practical difficulties in data collection and from theoretical problems. The method outlined in this paper is based on genealogical models of population divergence. We describe a hierarchy of models, and show how these fit into a hypothesis-testing framework that overcomes some of the theoretical problems of studying speciation. The method also advances the empirical study of speciation. Since testing of the models relies only on comparative DNA sequence data from closely related species, it can be applied to existing species regardless of whether it is practical or possible to generate hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carson, H. L. (1978) Speciation and sexual selection in Hawaiian Drosopbila. In: Brussard, P. F. (ed.) Ecological Genetics: The Interface, Springer-Verlag, New York, pp.93–107.

    Chapter  Google Scholar 

  • Ewens, W. J. (1979) Mathematical Population Genetics, Springer-Verlag, Berlin.

    Google Scholar 

  • Fisher, R. A. (1930) The Genetical Theory of Natural Selection, Clarendon, Oxford.

    Google Scholar 

  • Fu, X.-Y. (1995) Statistical properties of segregating sites. Theoret. Pop. Biol. 48:172–197.

    Article  CAS  Google Scholar 

  • Fu, X.-Y. and Li, W.-H. (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. H. and C. H. Langley (1979) Are evolutionary rates really variable? J. Mol. Evol. 13:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Hey, J. (1991) The structure of genealogies and the distribution of fixed differences between DNA sequences from natural populations. Genetics 128 831–840.

    PubMed  CAS  Google Scholar 

  • Hey, J. (1994) Bridging phylogenetics and population genetics with gene tree models. In: Schierwater, B., Streit, B., Wagner, G. P. and DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications, Birkhäuser, Basel, pp.435–449.

    Google Scholar 

  • Hey, J. and Kliman, R. M. (1993) Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Molec. Biol. Evol. 10:804–822.

    CAS  Google Scholar 

  • Hilton, H., Kliman, R. M. and Hey, J. (1994) Using hitchhiking genes to study adaptation and divergence during speciation within the Drosophila melanogaster complex. Evolution 48:1900–1913.

    CAS  Google Scholar 

  • Hudson, R. R. (1990) Gene genealogies and the coalescent process. In: Futuyma, D. J. and Antonovics, J. (eds) Oxford Surveys in Evolutionary Biology, vol. 7, Oxford University Press, Oxford, pp1–44.

    Google Scholar 

  • Hudson, R. R. and Kaplan, N. L. (1988) The coalescent process in models with selection and recombination. Genetics 120:831–840.

    PubMed  CAS  Google Scholar 

  • Hudson, R. R., Kreitman, M. and Aguade, M. (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159.

    PubMed  CAS  Google Scholar 

  • Kaplan, N. L., Darden, T. and Hudson, R. R. (1988) Coalescent process in models with selection. Genetics 120:819–829.

    PubMed  CAS  Google Scholar 

  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kliman, R. M. and Hey, J. (1993) DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics 133:375–387.

    CAS  Google Scholar 

  • Li, W.-H. (1976) Distribution of nucleotide difference between two randomly chosen cistrons in a subdivided population: the finite island model. Theor. Pop. Biol. 10:303–308.

    Article  CAS  Google Scholar 

  • Mayr, E. (1963) Animal Species and Evolution, Belknap Press, Cambridge,MA.

    Google Scholar 

  • Schaeffer, S. W. and Miller, E. L. (1991) Nuceotide sequence analysis of adh genes estimates the time of geographic isolation of the B ogota population of Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 88:6097–6101.

    Article  CAS  Google Scholar 

  • Schaeffer, S. W. and Miller, E. L. (1992) Estimates of gene flow in Drosophila pseudoobscura determined from nucleotide sequence analysis of the alcohol dehydrogenase region. Genetics 132:471–480.

    PubMed  CAS  Google Scholar 

  • Simonsen, K. L., Churchill, G. A. and Aquadro, C. F. (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. and Hudson, R. R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. and Maddison, W. P. (1989) A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:603–613.

    PubMed  CAS  Google Scholar 

  • Tajima, F. (1989a) DNA polymorphism in a subdivided population: the expected number of segregating sites in the two-population model. Genetics 123:229–240.

    PubMed  CAS  Google Scholar 

  • Tajima, F. (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.

    PubMed  CAS  Google Scholar 

  • Takahata, N. and Nei, M. (1985) Gene genealogy and variance of interpopulational nucleotide differences. Genetics 110:325–344.

    PubMed  CAS  Google Scholar 

  • Takahata, N. and M. Slatkin (1990) Genealogy of neutral genes in two partially isolated populations. Theor. Pop. Biol. 38:331–350.

    Article  CAS  Google Scholar 

  • Templeton, A. R. (1981) Mechanisms of speciation–a population genetic approach. Annu. Rev. Ecol. Syst. 12:23–48.

    Article  Google Scholar 

  • Wakeley, J. (1996a) The variance of pairwise nucleotide differences in two populations with migration. Theor. Pop. Biol. 49:39–57.

    Article  CAS  Google Scholar 

  • Wakeley, J. (1996b) Distinguishing migration from isolation using the variance of pairwise differences. Theor. Pop. Biol. 49:369–386.

    Article  CAS  Google Scholar 

  • Wakeley, J. (1996c) Pairwise differences under a general model of population subdivision. J. Genetics 75:81–89.

    Article  Google Scholar 

  • Wakeley, J. and Hey, J. (1997) Estimating ancestral population sizes. Genetics 145:847–855.

    PubMed  CAS  Google Scholar 

  • Wang, R.-L and Hey, J. (1996) Speciation history of Drosophila pseudoobscura and close relatives: inferences from DNA sequence variation at the period locus. Genetics 114:1113–1126.

    Google Scholar 

  • Wang, R.-L., Wakeley, J. and Hey, J. (1997) Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147:1091–1106.

    CAS  Google Scholar 

  • Watterson, G. A. (1975) On the number of segregating sites in genetical models without recombination. Theor. Pop. Biol. 7:256–276.

    Google Scholar 

  • Wright, S. (1931) Evolution in Mendelian populations. Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Wakeley, J., Hey, J. (1998). Testing speciation models with DNA sequence data. In: DeSalle, R., Schierwater, B. (eds) Molecular Approaches to Ecology and Evolution. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8948-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8948-3_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9840-9

  • Online ISBN: 978-3-0348-8948-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics